16 research outputs found

    Assessing the impact of low level laser therapy (LLLT) on biological systems: a review

    Get PDF
    PURPOSE: Low level laser therapy (LLLT) in the visible to near infrared spectral band (390-1100 nm) is absorption of laser light at the electronic level, without generation of heat. It may be applied in a wide range of treatments including wound healing, inflammation and pain reduction. Despite its potential beneficial impacts, the use of lasers for therapeutic purposes still remains controversial in mainstream medicine. Whilst taking into account the physical characteristics of different qualities of lasers, this review aims to provide a comprehensive account of the current literature available in the field pertaining to their potential impact at cellular and molecular levels elucidating mechanistic interactions in different mammalian models. The review also aims to focus on the integral approach of the optimal characteristics of LLLT that suit a biological system target to produce the beneficial effect at the cellular and molecular levels. METHODS: Recent research articles were reviewed that explored the interaction of lasers (coherent sources) and LEDs (incoherent sources) at the molecular and cellular levels. RESULTS: It is envisaged that underlying mechanisms of beneficial impact of lasers to patients involves biological processes at the cellular and molecular levels. The biological impact or effects of LLLT at the cellular and molecular level could include cellular viability, proliferation rate, as well as DNA integrity and the repair of damaged DNA. This review summarizes the available information in the literature pertaining to cellular and molecular effects of lasers. CONCLUSIONS: It is suggested that a change in approach is required to understand how to exploit the potential therapeutic modality of lasers whilst minimizing its possible detrimental effects

    Cell Cycle Gene Networks Are Associated with Melanoma Prognosis

    Get PDF
    BACKGROUND: Our understanding of the molecular pathways that underlie melanoma remains incomplete. Although several published microarray studies of clinical melanomas have provided valuable information, we found only limited concordance between these studies. Therefore, we took an in vitro functional genomics approach to understand melanoma molecular pathways. METHODOLOGY/PRINCIPAL FINDINGS: Affymetrix microarray data were generated from A375 melanoma cells treated in vitro with siRNAs against 45 transcription factors and signaling molecules. Analysis of this data using unsupervised hierarchical clustering and Bayesian gene networks identified proliferation-association RNA clusters, which were co-ordinately expressed across the A375 cells and also across melanomas from patients. The abundance in metastatic melanomas of these cellular proliferation clusters and their putative upstream regulators was significantly associated with patient prognosis. An 8-gene classifier derived from gene network hub genes correctly classified the prognosis of 23/26 metastatic melanoma patients in a cross-validation study. Unlike the RNA clusters associated with cellular proliferation described above, co-ordinately expressed RNA clusters associated with immune response were clearly identified across melanoma tumours from patients but not across the siRNA-treated A375 cells, in which immune responses are not active. Three uncharacterised genes, which the gene networks predicted to be upstream of apoptosis- or cellular proliferation-associated RNAs, were found to significantly alter apoptosis and cell number when over-expressed in vitro. CONCLUSIONS/SIGNIFICANCE: This analysis identified co-expression of RNAs that encode functionally-related proteins, in particular, proliferation-associated RNA clusters that are linked to melanoma patient prognosis. Our analysis suggests that A375 cells in vitro may be valid models in which to study the gene expression modules that underlie some melanoma biological processes (e.g., proliferation) but not others (e.g., immune response). The gene expression modules identified here, and the RNAs predicted by Bayesian network inference to be upstream of these modules, are potential prognostic biomarkers and drug targets
    corecore