81 research outputs found

    Cryogenics for the Superconducting Module Test Facility

    Get PDF

    Dynamic PID loop control

    Full text link
    The Horizontal Test Stand (HTS) SRF Cavity and Cryomodule 1 (CM1) of eight 9-cell, 1.3GHz SRF cavities are operating at Fermilab. For the cryogenic control system, how to hold liquid level constant in the cryostat by regulation of its Joule-Thompson JT-valve is very important after cryostat cool down to 2.0 K. The 72-cell cryostat liquid level response generally takes a long time delay after regulating its JT-valve; therefore, typical PID control loop should result in some cryostat parameter oscillations. This paper presents a type of PID parameter self-optimal and Time-Delay control method used to reduce cryogenic system parameters' oscillation.Comment: 7 pp. Cryogenic Engineering Conference and International Cryogenic Materials Conference CEC-ICMC 2011, 13-17 June 2011. Spokane, Washingto

    Fermilab SRF cryomodule operational experience

    Full text link
    Fermi National Accelerator Laboratory is constructing an Advanced Accelerator Research and Development facility at New Muon Lab. The cryogenic infrastructure in support of the initial phase of the facility consists of two Tevatron style standalone refrigerators, cryogenic distribution system as well as an ambient temperature pumping system to achieve 2 K operations with supporting purification systems. During this phase of the project a single Type III plus 1.3 GHz cryomodule was installed, cooled and tested. Design constraints of the cryomodule required that the cryomodule individual circuits be cooled at predetermined rates. These constraints required special design solutions to achieve. This paper describes the initial cooldown and operational experience of a 1.3 GHz cryomodule using the New Muon Lab cryogenic system.Comment: 7 pp. Cryogenic Engineering Conference and International Cryogenic Materials Conference CEC-ICMC 2011 13-17 June 2011, Spokane, Washingto

    On small-noise equations with degenerate limiting system arising from volatility models

    Full text link
    The one-dimensional SDE with non Lipschitz diffusion coefficient dXt=b(Xt)dt+σXtγdBt, X0=x, γ<1dX_{t} = b(X_{t})dt + \sigma X_{t}^{\gamma} dB_{t}, \ X_{0}=x, \ \gamma<1 is widely studied in mathematical finance. Several works have proposed asymptotic analysis of densities and implied volatilities in models involving instances of this equation, based on a careful implementation of saddle-point methods and (essentially) the explicit knowledge of Fourier transforms. Recent research on tail asymptotics for heat kernels [J-D. Deuschel, P.~Friz, A.~Jacquier, and S.~Violante. Marginal density expansions for diffusions and stochastic volatility, part II: Applications. 2013, arxiv:1305.6765] suggests to work with the rescaled variable Xε:=ε1/(1−γ)XX^{\varepsilon}:=\varepsilon^{1/(1-\gamma)} X: while allowing to turn a space asymptotic problem into a small-ε\varepsilon problem with fixed terminal point, the process XεX^{\varepsilon} satisfies a SDE in Wentzell--Freidlin form (i.e. with driving noise εdB\varepsilon dB). We prove a pathwise large deviation principle for the process XεX^{\varepsilon} as ε→0\varepsilon \to 0. As it will become clear, the limiting ODE governing the large deviations admits infinitely many solutions, a non-standard situation in the Wentzell--Freidlin theory. As for applications, the ε\varepsilon-scaling allows to derive exact log-asymptotics for path functionals of the process: while on the one hand the resulting formulae are confirmed by the CIR-CEV benchmarks, on the other hand the large deviation approach (i) applies to equations with a more general drift term and (ii) potentially opens the way to heat kernel analysis for higher-dimensional diffusions involving such an SDE as a component.Comment: 21 pages, 1 figur
    • …
    corecore