107 research outputs found
A New Scanning Electron Microscopy Approach to the Quantification of Bone Mineral Distribution: Backscattered Electron Image Grey-Levels Correlated to Calcium Kα-Line Intensities
The introduction of backscattered electron (BSE) imaging in scanning electron microscopy (SEM) has led to new possibilities for the evaluation of mineral distributions in bone on a microscopic level. The different grey-levels seen in the BSE-images can be used as a measure for the local mineral content of bone. In order to calibrate these BSE-grey-levels (BSE-GL) and correlate them to mineral contents, various attempts, using reference samples with known weighted mean atomic number and/or using simulated bone tissues with known hydroxyapatite concentrations, have been made. In contrast, a new approach is presented here based on measurements of the X-ray intensities of the calcium Kα-line on selected areas of real bone samples; the measured intensities are then related to the corresponding BSE-GL. A linear positive correlation between weight percent (wt%) calcium and BSE-GL was found. When the BSE-mode is standardized using carbon and aluminum as references, the different mineral contents in bone samples can be recorded as BSE-GL, calibrated to wt% of calcium or hydroxyapatite (HA), respectively. The resulting mineral concentration histograms have a dynamic range from O to 89 wt% HA and have a binwidth resolution of 0.45 wt% HA. The presented modifications of the BSE method strongly enhance its feasibility in the field of bone research and its application as a special diagnostic tool for bone diseases
Phenotypic spectrum in osteogenesis imperfecta due to mutations in TMEM38B: unravelling a complex cellular defect.
Context: Recessive mutations in TMEM38B cause type XIV osteogenesis imperfecta (OI) by dysregulating intracellular calcium flux. Objectives: Clinical and bone material phenotype description and osteoblast differentiation studies. Design and Setting: Natural history study in paediatric research centres. Patients: Eight patients with type XIV OI. Main Outcome Measures: Clinical examinations included: bone mineral density, radiographs, echocardiography and muscle biopsy. Bone biopsy samples (n=3) were analysed using histomorphometry, quantitative backscattered electron microscopy and Raman microspectroscopy. Cellular differentiation studies were performed on proband and control osteoblasts and normal murine osteoclasts. Results: The clinical phenotype of type XIV OI ranges from asymptomatic to severe. Previously unreported features include vertebral fractures, periosteal cloaking, coxa vara and extraskeletal features (muscular hypotonia, cardiac abnormalities). Proband L1-L4 bone density Z-score was reduced (median -3.3 [range -4.77 to +0.1; n=7]), and increased by +1.7 (1.17 to 3.0; n=3) following bisphosphonate therapy. TMEM38B mutant bone has reduced trabecular bone volume, osteoblast and particularly osteoclast numbers, with >80% reduction in bone resorption. Bone matrix mineralization is normal and nanoporosity low. We demonstrate a complex osteoblast differentiation defect with decreased expression of early markers and increased late and mineralization-related markers. Predominance of TRIC-B over TRIC-A expression in murine osteoclasts supports an intrinsic osteoclast defect underlying low bone turnover. Conclusions: OI type XIV has a bone histology, matrix mineralization and osteoblast differentiation pattern that is distinct from OI with collagen defects. Probands are responsive to bisphosphonates and some show muscular and cardiovascular features possibly related to intracellular calcium flux abnormalities
Progressive non-infectious anterior vertebral fusion, split cord malformation and situs inversus visceralis
BACKGROUND: Progressive non-infectious anterior vertebral fusion is a unique spinal disorder with distinctive radiological features. Early radiographic findings consist of narrowing of the anterior aspect of the intervertebral disk with adjacent end plate erosions. There is a specific pattern of progression. The management needs a multi-disciplinary approach with major input from the orthopaedic surgeon. CASE REPORT: We report a 12-year-old-female with progressive anterior vertebral fusion. This occurred at three vertebral levels. In the cervical spine there was progressive fusion of the lateral masses of the Axis with C3. Secondly, at the cervico-thoracic level, a severe, progressive, anterior thoracic vertebral fusion (C7-T5) and (T6-T7) resulted in the development of a thick anterior bony ridge and massive sclerosis and thirdly; progressive anterior fusion at L5-S1. Whereas at the level of the upper lumbar spines (L1) a split cord malformation was encountered. Situs inversus visceralis was an additional malformation. The role of the CT scan in detecting the details of the vertebral malformations was important. To our knowledge, neither this malformation complex and nor the role of the CT scan in evaluating these patients, have previously been described. CONCLUSION: The constellations of the skeletal abnormalities in our patient do not resemble any previously reported conditions with progressive anterior vertebral fusion. We also emphasise the important role of computerized tomography in the investigation of these patients in order to improve our understanding of the underlying pathology, and to comprehend the various stages of the progressive fusion process. 3D-CT scan was performed to improve assessment of the spinal changes and to further evaluate the catastrophic complications if fracture of the ankylosed vertebrae does occur. We believe that prompt management cannot be accomplished, unless the nature of these bony malformations is clarified
Osteoporosis and skeletal dysplasia caused by pathogenic variants in SGMS2
Mechanisms leading to osteoporosis are incompletely understood. Genetic disorders with skeletal fragility provide insight into metabolic pathways contributing to bone strength. We evaluated 6 families with rare skeletal phenotypes and osteoporosis by next-generation sequencing. In all the families, we identified a heterozygous variant in SGMS2, a gene prominently expressed in cortical bone and encoding the plasma membrane-resident sphingomyelin synthase SMS2. Four unrelated families shared the same nonsense variant, c.148C>T (p.Arg50*), whereas the other families had a missense variant, c.185T>G (p.IIe62Ser) or c.191T>G (p.Met64Arg). Subjects with p.Arg50* presented with childhood-onset osteoporosis with or without cranial sclerosis. Patients with p.IIe62Ser or p.Met64Arg had a more severe presentation, with neonatal fractures, severe short stature, and spondylometaphyseal dysplasial Several subjects had experienced peripheral facial nerve palsy or other neurological manifestations. Bone biopsies showed markedly altered bone material characteristics, including defective bone mineralization. Osteoclast formation and function in vitro was normal. While the p.Arg50* mutation yielded a catalytically inactive enzyme, p.IIe62Ser and p.Met64Arg each enhanced the rate of de novo sphingomyelin production by blocking export of a functional enzyme from the endoplasmic reticulum. SGMS2 pathogenic variants underlie a spectrum of skeletal conditions, ranging from isolated osteoporosis to complex skeletal dysplasia, suggesting a critical role for plasma membrane-bound sphingomyelin metabolism in skeletal homeostasis.Peer reviewe
Osteochondritis dissecans and Osgood Schlatter disease in a family with Stickler syndrome
<p>Abstract</p> <p>Purpose</p> <p>Stickler syndrome is among the most common autosomal dominant connective tissue disorders but is often unrecognised and therefore not diagnosed by clinicians. Despite much speculation, the cause of osteochondrosis in general and osteochondritis dissecans (OCD) and Osgood Schlatter syndrome (OSS) in particular remain unclear. Etiological understanding is essential. We describe a pair of family subjects presented with OCD and OSS as a symptom complex rather than a diagnosis.</p> <p>Methods</p> <p>Detailed clinical and radiographic examinations were undertaken with emphasis on the role of MRI imaging. Magnetic resonance imaging may allow early prediction of articular lesion healing potential in patients with Stickler syndrome.</p> <p>Results</p> <p>The phenotype of Stickler syndrome can be diverse and therefore misleading. The expectation that the full clinical criteria of any given genetic disorder such as Stickler syndrome will always be present can easily lead to an underestimation of these serious inheritable disorders. We report here two family subjects, a male proband and his aunt (paternal sister), both presented with the major features of Stickler syndrome. Tall stature with marfanoid habitus, astigmatism/congenital vitreous abnormality and submucus cleft palate/cleft uvula, and enlarged painful joints with early onset osteoarthritis. Osteochondritis dissecans (OCD) and Osgood Schlatter syndrome (OSS) were the predominating joint abnormalities.</p> <p>Conclusion</p> <p>We observed that the nature of the articular and physeal abnormalities was consistent with a localised manifestation of a more generalised epiphyseal dysplasia affecting the weight-bearing joints. In these two patients, OCD and OSS appeared to be the predominant pathologic musculoskeletal consequences of an underlying Stickler's syndrome. It is empirical to consider generalised epiphyseal dysplasia as a major underlying causation that might drastically affect the weight-bearing joints.</p
Isolation and characterization of a new CO-utilizing strain, Thermoanaerobacter thermohydrosulfuricus subsp. carboxydovorans, isolated from a geothermal spring in Turkey
A novel anaerobic, thermophilic, Gram-positive, spore-forming, and sugar-fermenting bacterium (strain TLO) was isolated from a geothermal spring in Ayaş, Turkey. The cells were straight to curved rods, 0.4–0.6 μm in diameter and 3.5–10 μm in length. Spores were terminal and round. The temperature range for growth was 40–80°C, with an optimum at 70°C. The pH optimum was between 6.3 and 6.8. Strain TLO has the capability to ferment a wide variety of mono-, di-, and polysaccharides and proteinaceous substrates, producing mainly lactate, next to acetate, ethanol, alanine, H2, and CO2. Remarkably, the bacterium was able to grow in an atmosphere of up to 25% of CO as sole electron donor. CO oxidation was coupled to H2 and CO2 formation. The G + C content of the genomic DNA was 35.1 mol%. Based on 16S rRNA gene sequence analysis and the DNA–DNA hybridization data, this bacterium is most closely related to Thermoanaerobacter thermohydrosulfuricus and Thermoanaerobacter siderophilus (99% similarity for both). However, strain TLO differs from Thermoanaerobacter thermohydrosulfuricus in important aspects, such as CO-utilization and lipid composition. These differences led us to propose that strain TLO represents a subspecies of Thermoanaerobacter thermohydrosulfuricus, and we therefore name it Thermoanaerobacter thermohydrosulfuricus subsp. carboxydovorans
- …