600 research outputs found

    Nuclear spin state narrowing via gate--controlled Rabi oscillations in a double quantum dot

    Full text link
    We study spin dynamics for two electrons confined to a double quantum dot under the influence of an oscillating exchange interaction. This leads to driven Rabi oscillations between the \ket{\uparrow\downarrow}--state and the \ket{\downarrow\uparrow}--state of the two--electron system. The width of the Rabi resonance is proportional to the amplitude of the oscillating exchange. A measurement of the Rabi resonance allows one to narrow the distribution of nuclear spin states and thereby to prolong the spin decoherence time. Further, we study decoherence of the two-electron states due to the hyperfine interaction and give requirements on the parameters of the system in order to initialize in the \ket{\uparrow\downarrow}--state and to perform a SWAP\sqrt{\mathrm{SWAP}} operation with unit fidelity.Comment: v1:9 pages, 1 figure; v2: 13 pages, 2 figures, added section on measurement, to appear in Phys. Rev.

    Legal Assistance in the Federal Republic of Germany

    Get PDF

    Universal phase shift and non-exponential decay of driven single-spin oscillations

    Full text link
    We study, both theoretically and experimentally, driven Rabi oscillations of a single electron spin coupled to a nuclear spin bath. Due to the long correlation time of the bath, two unusual features are observed in the oscillations. The decay follows a power law, and the oscillations are shifted in phase by a universal value of ~pi/4. These properties are well understood from a theoretical expression that we derive here in the static limit for the nuclear bath. This improved understanding of the coupled electron-nuclear system is important for future experiments using the electron spin as a qubit.Comment: Main text: 4 pages, 3 figures, Supplementary material: 2 pages, 3 figure

    ESCAP CovCAP survey of heads of academic departments to assess the perceived initial (April/May 2020) impact of the COVID-19 pandemic on child and adolescent psychiatry services.

    Get PDF
    In April 2020, the European Society for Child and Adolescent Psychiatry (ESCAP) Research Academy and the ESCAP Board launched the first of three scheduled surveys to evaluate the impact of the coronavirus disease 2019 (COVID-19) pandemic on child and adolescent psychiatry (CAP) services in Europe and to assess the abilities of CAP centers to meet the new challenges brought on by the crisis. The survey was a self-report questionnaire, using a multistage process, which was sent to 168 heads of academic CAP services in 24 European countries. Eighty-two responses (56 complete) from 20 countries, representing the subjective judgement of heads of CAP centers, were received between mid-April and mid-May 2020. Most respondents judged the impact of the crisis on the mental health of their patients as medium (52%) or strong (33%). A large majority of CAP services reported no COVID-19 positive cases among their inpatients and most respondents declared no or limited sick leaves in their team due to COVID-19. Outpatient, daycare, and inpatient units experienced closures or reductions in the number of treated patients throughout Europe. In addition, a lower referral rate was observed in most countries. Respondents considered that they were well equipped to handle COVID-19 patients despite a lack of protective equipment. Telemedicine was adopted by almost every team despite its sparse use prior to the crisis. Overall, these first results were surprisingly homogeneous, showing a substantially reduced patient load and a moderate effect of the COVID-19 crisis on psychopathology. The effect on the organization of CAP services appears profound. COVID-19 crisis has accelerated the adoption of new technologies, including telepsychiatry

    SN 2013df, a double-peaked IIb supernova from a compact progenitor and an extended H envelope

    Full text link
    Optical observations of the type IIb SN 2013df from a few days to about 250 days after explosion are presented. These observations are complemented with UV photometry taken by \textit{SWIFT} up to 60 days post-explosion. The double-peak optical light curve is similar to those of SNe 1993J and 2011fu although with different decline and rise rates. From the modelling of the bolometric light curve, we have estimated that the total mass of synthesised 56^{56}Ni in the explosion is 0.1\sim0.1 M_{\odot}, while the ejecta mass is 0.81.40.8-1.4 M_{\odot} and the explosion energy 0.41.2×10510.4-1.2 \times 10^{51}erg. In addition, we have estimated a lower limit to the progenitor radius ranging from 6416964-169 RR_{\odot}. The spectral evolution indicates that SN 2013df had a hydrogen envelope similar to SN 1993J (0.2\sim 0.2 M_{\odot}). The line profiles in nebular spectra suggest that the explosion was asymmetric with the presence of clumps in the ejecta, while the [O\,{\sc i}] λ\lambdaλ\lambda63006300, 63646364 luminosities, may indicate that the progenitor of SN 2013df was a relatively low mass star ( 1213\sim 12-13 M_{\odot}).Comment: 18 pages, 11 figures, 9 tables, accepted for publication in MNRA

    Six months functional response to early psychosis intervention program best predicts outcome after three years.

    Get PDF
    Not all patients respond well to early interventions for their psychosis. The present study's goal was to evaluate whether patients' responses in the first six months of treatment in a specialised three-year programme could predict final outcomes. 206 early psychosis patients were assessed at baseline, using a large set of sociodemographic and clinical variables, and then monitored for 36 months. Among those variables, changes in their Global Assessment of Functioning (GAF) scores during the first six months were used to predict outcomes after three years. Changes in GAF scores during the first six months were the only variables that predicted every symptom of functional outcome. GAF scores were also always the first or second most important predictor for every outcome. This finding held for both high- and low-functioning patients at baseline. Predicting poor long-term outcomes after only six months should help clinicians to improve treatments

    Nuclear spin dynamics and Zeno effect in quantum dots and defect centers

    Full text link
    We analyze nuclear spin dynamics in quantum dots and defect centers with a bound electron under electron-mediated coupling between nuclear spins due to the hyperfine interaction ("J-coupling" in NMR). Our analysis shows that the Overhauser field generated by the nuclei at the position of the electron has short-time dynamics quadratic in time for an initial nuclear spin state without transverse coherence. The quadratic short-time behavior allows for an extension of the Overhauser field lifetime through a sequence of projective measurements (quantum Zeno effect). We analyze the requirements on the repetition rate of measurements and the measurement accuracy to achieve such an effect. Further, we calculate the long-time behavior of the Overhauser field for effective electron Zeeman splittings larger than the hyperfine coupling strength and find, both in a Dyson series expansion and a generalized master equation approach, that for a nuclear spin system with a sufficiently smooth polarization the electron-mediated interaction alone leads only to a partial decay of the Overhauser field by an amount on the order of the inverse number of nuclear spins interacting with the electron.Comment: 11 pages, 3 figure
    corecore