323 research outputs found
Distinct firing patterns of identified basket and dendrite-targeting interneurons in the prefrontal cortex during hippocampal theta and local spindle oscillations
The medial prefrontal cortex is involved in working memory and executive control. However, the collective spatiotemporal organization of the cellular network has not been possible to explain during different brain states.Weshow that pyramidal cells in the prelimbic cortex fire synchronized to hippocampal theta and local spindle oscillations in anesthetized rats. To identify which types of interneurons contribute to the synchronized activity, we recorded and juxtacellularly labeled parvalbumin- and calbindin-expressing (PV+/CB+) basket cells and CB-expressing, PV-negative (CB+/PV-) dendrite-targeting interneurons during both network oscillations. All CB+/PV- dendrite-targeting cells strongly decreased their firing rate during hippocampal theta oscillations. Most PV+/CB+ basket cells fired at the peak of dorsalCA1theta cycles, similar to prefrontal pyramidal cells.Weshow that pyramidal cells in the ventral hippocampus also fire around the peak of dorsal CA1 theta cycles, in contrast to previously reported dorsal hippocampal pyramidal cells. Therefore, prefrontal neurons might be driven by monosynaptic connections from the ventral hippocampus during theta oscillations. During prefrontal spindle oscillations, the majority of pyramidal cells and PV+/CB+ basket cells fired preferentially at the trough and early ascending phase, but CB+/PV- dendrite-targeting cells fired uniformly at all phases.Weconclude thatPV+/CB+ basket cells contribute to rhythmic responses of prefrontal pyramidal cells in relation to hippocampal and thalamic inputs and CB+/PV-dendrite-targeting cells modulate the excitability of dendrites and spines regardless of these field rhythms. Distinct classes of GABAergic interneuron in the prefrontal cortex contribute differentially to the synchronization of pyramidal cells during network oscillations. Copyright © 2009 Society for Neuroscience
An Approach for Reliably Investigating Hippocampal Sharp Wave-Ripples In Vitro
Among the various hippocampal network patterns, sharp wave-ripples (SPW-R) are currently the mechanistically least understood. Although accurate information on synaptic interactions between the participating neurons is essential for comprehensive understanding of the network function during complex activities like SPW-R, such knowledge is currently notably scarce. counterpart. We show that slice storage in the interface chamber close to physiological temperature is the required condition to preserve network integrity that is necessary for the generation of SPW-R. Moreover, we demonstrate the utility of our method for studying synaptic and network properties of SPW-R, using electrophysiological and imaging methods that can only be applied in the submerged system.The approach presented here demonstrates a reliable and experimentally simple strategy for studying hippocampal sharp wave-ripples. Given its utility and easy application we expect our model to foster the generation of new insight into the network physiology underlying SPW-R
Consistency and diversity of spike dynamics in the neurons of bed nucleus of Stria Terminalis of the rat: a dynamic clamp study
Neurons display a high degree of variability and diversity in the expression and regulation of their voltage-dependent ionic channels. Under low level of synaptic background a number of physiologically distinct cell types can be identified in most brain areas that display different responses to standard forms of intracellular current stimulation. Nevertheless, it is not well understood how biophysically different neurons process synaptic inputs in natural conditions, i.e., when experiencing intense synaptic bombardment in vivo. While distinct cell types might process synaptic inputs into different patterns of action potentials representing specific "motifs'' of network activity, standard methods of electrophysiology are not well suited to resolve such questions. In the current paper we performed dynamic clamp experiments with simulated synaptic inputs that were presented to three types of neurons in the juxtacapsular bed nucleus of stria terminalis (jcBNST) of the rat. Our analysis on the temporal structure of firing showed that the three types of jcBNST neurons did not produce qualitatively different spike responses under identical patterns of input. However, we observed consistent, cell type dependent variations in the fine structure of firing, at the level of single spikes. At the millisecond resolution structure of firing we found high degree of diversity across the entire spectrum of neurons irrespective of their type. Additionally, we identified a new cell type with intrinsic oscillatory properties that produced a rhythmic and regular firing under synaptic stimulation that distinguishes it from the previously described jcBNST cell types. Our findings suggest a sophisticated, cell type dependent regulation of spike dynamics of neurons when experiencing a complex synaptic background. The high degree of their dynamical diversity has implications to their cooperative dynamics and synchronization
Recall Performance Improvement in a Bio-Inspired Model of the Mammalian Hippocampus
Mammalian hippocampus is involved in short-term formation of declarative memories. We employed a
bio-inspired neural model of hippocampal CA1 region consisting of a zoo of excitatory and inhibitory
cells. Cells’ firing was timed to a theta oscillation paced by two distinct neuronal populations exhibiting
highly regular bursting activity, one tightly coupled to the trough and the other to the peak of theta. To
systematically evaluate the model’s recall performance against number of stored patterns, overlaps and
‘active cells per pattern’, its cells were driven by a non-specific excitatory input to their dendrites. This
excitatory input to model excitatory cells provided context and timing information for retrieval of
previously stored memory patterns. Inhibition to excitatory cells’ dendrites acted as a non-specific global
threshold machine that removed spurious activity during recall. Out of the three models tested, ‘model 1’
recall quality was excellent across all conditions. ‘Model 2’ recall was the worst. The number of ‘active
cells per pattern’ had a massive effect on network recall quality regardless of how many patterns were
stored in it. As ‘active cells per pattern’ decreased, network’s memory capacity increased, interference
effects between stored patterns decreased, and recall quality improved. Key finding was that increased
firing rate of an inhibitory cell inhibiting a network of excitatory cells has a better success at removing
spurious activity at the network level and improving recall quality than increasing the synaptic strength of
the same inhibitory cell inhibiting the same network of excitatory cells, while keeping its firing rate fixed
Encoding and retrieval in a CA1 microcircuit model of the hippocampus
Recent years have witnessed a dramatic accumulation of
knowledge about the morphological, physiological and molecular characteristics,
as well as connectivity and synaptic properties of neurons in
the mammalian hippocampus. Despite these advances, very little insight
has been gained into the computational function of the different neuronal
classes; in particular, the role of the various inhibitory interneurons in
encoding and retrieval of information remains elusive. Mathematical and
computational models of microcircuits play an instrumental role in exploring
microcircuit functions and facilitate the dissection of operations
performed by diverse inhibitory interneurons. A model of the CA1 microcircuitry
is presented using biophysical representations of its major cell
types: pyramidal, basket, axo-axonic, bistratified and oriens lacunosummoleculare
cells. Computer simulations explore the biophysical mechanisms
by which encoding and retrieval of spatio-temporal input patterns
are achieved by the CA1 microcircuitry. The model proposes functional
roles for the different classes of inhibitory interneurons in the encoding
and retrieval cycles
Photo-antagonism of the GABAA receptor
Neurotransmitter receptor trafficking is fundamentally important for synaptic transmission and neural network activity. GABAA receptors and inhibitory synapses are vital components of brain function, yet much of our knowledge regarding receptor mobility and function at inhibitory synapses is derived indirectly from using recombinant receptors, antibody-tagged native receptors and pharmacological treatments. Here we describe the use of a set of research tools that can irreversibly bind to and affect the function of recombinant and neuronal GABAA receptors following ultraviolet photoactivation. These compounds are based on the competitive antagonist gabazine and incorporate a variety of photoactive groups. By using site-directed mutagenesis and ligand-docking studies, they reveal new areas of the GABA binding site at the interface between receptor β and α subunits. These compounds enable the selected inactivation of native GABAA receptor populations providing new insight into the function of inhibitory synapses and extrasynaptic receptors in controlling neuronal excitation
Complementary roles of Cholecystokinin- and Parvalbumin-expressing GABAergic neurons in hippocampal network oscillations
In the hippocampal CA1 area, a relatively homogenous population of pyramidal cells is accompanied by a diversity of GABAergic interneurons. Previously, we found that parvalbumin-expressing basket, axo-axonic, bistratified, and oriens-lacunosum moleculare cells, innervating different domains of pyramidal cells, have distinct firing patterns during network oscillations in vivo. A second family of interneurons, expressing cholecystokinin but not parvalbumin, is known to target the same domains of pyramidal cells as do the parvalbumin cells. To test the temporal activity of these independent and parallel GABAergic inputs, we recorded the precise spike timing of identified cholecystokinin interneurons during hippocampal network oscillations in anesthetized rats and determined their molecular expression profiles and synaptic targets. The cells were cannabinoid receptor type 1 immunopositive. Contrary to the stereotyped firing of parvalbumin interneurons, cholecystokinin-expressing basket and dendrite-innervating cells discharge, on average, with 1.7 ± 2.0 Hz during high-frequency ripple oscillations in an episode-dependent manner. During theta oscillations, cholecystokinin-expressing interneurons fire with 8.8 ± 3.3 Hz at a characteristic time on the ascending phase of theta waves (155 ± 81°), when place cells start firing in freely moving animals. The firing patterns of some interneurons recorded in drug-free behaving rats were similar to cholecystokinin cells in anesthetized animals. Our results demonstrate that cholecystokinin- and parvalbumin-expressing interneurons make different contributions to network oscillations and play distinct roles in different brain states. We suggest that the specific spike timing of cholecystokinin interneurons and their sensitivity to endocannabinoids might contribute to differentiate subgroups of pyramidal cells forming neuronal assemblies, whereas parvalbumin interneurons contribute to synchronizing the entire network
Molecular and Electrophysiological Characterization of GFP-Expressing CA1 Interneurons in GAD65-GFP Mice
The use of transgenic mice in which subtypes of neurons are labeled with a fluorescent protein has greatly facilitated modern neuroscience research. GAD65-GFP mice, which have GABAergic interneurons labeled with GFP, are widely used in many research laboratories, although the properties of the labeled cells have not been studied in detail. Here we investigate these cells in the hippocampal area CA1 and show that they constitute ∼20% of interneurons in this area. The majority of them expresses either reelin (70±2%) or vasoactive intestinal peptide (VIP; 15±2%), while expression of parvalbumin and somatostatin is virtually absent. This strongly suggests they originate from the caudal, and not the medial, ganglionic eminence. GFP-labeled interneurons can be subdivided according to the (partially overlapping) expression of neuropeptide Y (42±3%), cholecystokinin (25±3%), calbindin (20±2%) or calretinin (20±2%). Most of these subtypes (with the exception of calretinin-expressing interneurons) target the dendrites of CA1 pyramidal cells. GFP-labeled interneurons mostly show delayed onset of firing around threshold, and regular firing with moderate frequency adaptation at more depolarized potentials
Encoding of Spatio-Temporal Input Characteristics by a CA1 Pyramidal Neuron Model
The in vivo activity of CA1 pyramidal neurons alternates between regular spiking and bursting, but how these changes affect information processing remains unclear. Using a detailed CA1 pyramidal neuron model, we investigate how timing and spatial arrangement variations in synaptic inputs to the distal and proximal dendritic layers influence the information content of model responses. We find that the temporal delay between activation of the two layers acts as a switch between excitability modes: short delays induce bursting while long delays decrease firing. For long delays, the average firing frequency of the model response discriminates spatially clustered from diffused inputs to the distal dendritic tree. For short delays, the onset latency and inter-spike-interval succession of model responses can accurately classify input signals as temporally close or distant and spatially clustered or diffused across different stimulation protocols. These findings suggest that a CA1 pyramidal neuron may be capable of encoding and transmitting presynaptic spatiotemporal information about the activity of the entorhinal cortex-hippocampal network to higher brain regions via the selective use of either a temporal or a rate code
- …