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Abstract. Mammalian hippocampus is involved in short-term formation of de-

clarative memories. We employed a bio-inspired neural model of hippocampal 

CA1 region consisting of a zoo of excitatory and inhibitory cells. Cells’ firing 

was timed to a theta oscillation paced by two distinct neuronal populations ex-

hibiting highly regular bursting activity, one tightly coupled to the trough and 

the other to the peak of theta. To systematically evaluate the model’s recall per-

formance against number of stored patterns, overlaps and ‘active cells per pat-

tern’, its cells were driven by a non-specific excitatory input to their dendrites. 

This excitatory input to model excitatory cells provided context and timing in-

formation for retrieval of previously stored memory patterns. Inhibition to ex-

citatory cells’ dendrites acted as a non-specific global threshold machine that 

removed spurious activity during recall. Out of the three models tested, ‘model 

1’ recall quality was excellent across all conditions. ‘Model 2’ recall was the 

worst. The number of ‘active cells per pattern’ had a massive effect on network 

recall quality regardless of how many patterns were stored in it. As ‘active cells 

per pattern’ decreased, network’s memory capacity increased, interference ef-

fects between stored patterns decreased, and recall quality improved. Key find-

ing was that increased firing rate of an inhibitory cell inhibiting a network of 

excitatory cells has a better success at removing spurious activity at the network 

level and improving recall quality than increasing the synaptic strength of the 

same inhibitory cell inhibiting the same network of excitatory cells, while keep-

ing its firing rate fixed. 

Keywords: Associative memories, Neural information processing, Brain, Inhi-

bition. 

1 Introduction 

Memory is our most precious faculty. The case of Henry Molaison (the infamous 

‘HM’ patient) has taught us a lot about what happens when we cannot store memo-
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ries. Without memory we are unable to remember our past experiences and our loved 

ones, while still being able to think about the future. Without memory we cannot learn 

anything new. Associative memory is the ability to learn and remember the relation-

ship between items, places, events, and/or objects which may be unrelated [1].  

Hippocampus, the site of short-term storage of declarative memories [2], is one of 

the most studied brain areas yielding a wealth of knowledge of cell types and their 

anatomical, physiological, synaptic, and network properties [3]. Cells in various hip-

pocampal regions have been hypothesized to compute information differently. Re-

gions CA3 and CA1 have also been implicated in auto- and hetero-association (stor-

age) of declarative memories, respectively [4]. 

 

 

Fig. 1. Associative neural network model of region CA1 of the hippocampus and CA1-PC 

model with one excitatory (CA3) and six inhibitory (BSC) synaptic contacts on its SR den-

drites. During retrieval only PC, BSC, and OLM cells are active. AAC and BC are inactive due 

to strong medial septum inhibition. BSC and PC are driven on their SR dendrites by a strong 

CA3 excitatory input, which presented the contextual information. Red circles on PC dendrites 

represent loaded synapses, whereas black circles on PC dendrites represent unloaded synapses. 

EC: Entorhinal cortical input; CA3: Schaffer collateral input; AAC: Axo-axonic cell; BC: bas-

ket cell; BSC: bistratified cell; OLM: oriens lacunosum-moleculare cell; SLM: stratum lacuno-

sum moleculare; SR:  stratum radiatum; SP: stratum pyramidale; SO: stratum oriens. 

In 2010 a bio-inspired microcircuit model of region CA1 was introduced that con-

trolled for itself the storage and recall of patterns of information arriving at high rates 

[5]. The model was based upon the biological details were then known about the hip-

pocampal neural circuit [6-7]. The model explored the functional roles of somatic, 

axonic and dendritic inhibition in the encoding and retrieval of memories. It showed 

how theta modulated inhibition separated encoding and retrieval of memories into two 

functionally independent processes. It showed how somatic inhibition allowed gen-

eration of dendritic calcium spikes that promoted synaptic long-term plasticity (LTP), 

while minimizing cell output. Proximal dendritic inhibition controlled both cell output 

and suppressed dendritic calcium spikes, thus preventing LTP, whereas distal dendrit-

ic inhibition removed interference from spurious memories during recall. The mean 

recall quality of the model was tested as function of memory patterns stored. Recall 
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dropped as more patterns were encoded due to interference between previously stored 

memories.  

Here, we systematically investigate the biophysical mechanisms of this bio-

inspired neural network model of region CA1 of the hippocampus [5] to improve its 

memory capacity and recall performance. In particular, we examine how selective 

modulation of feedforward/feedback excitatory/inhibitory pathways targeting inhibi-

tory and excitatory cells may influence the thresholding ability of dendritic inhibition 

to remove at the network level spurious activities, which may otherwise impair the 

recall performance of the network, and improve its mean recall quality as more and 

more overlapping memories are stored. 

2 Materials and methods 

2.1 Neural network model 

Figure 1 depicts the simulated neural network model of region CA1 of the hippocam-

pus. The model consisted of 100 excitatory cells (pyramidal cells (PC)) and four types 

of inhibitory cells: 1 axo-axonic cell (AAC), 2 basket cells (BC), 1 bistriatified (BSC) 

and 1 oriens lacunosum-moleculare (OLM) cell. Simplified morphologies including 

the soma, apical and basal dendrites and a portion of the axon were used for each cell 

type. The biophysical properties of each cell were adapted from cell types reported in 

the literature, which were extensively validated against experimental data in [8-12]. 

Using known physical properties and effects of cell structures is a more efficient way 

to examine scientific hypothesis compare to blind computational optimization. The 

core of our research was biological properties and mechanisms because by we ob-

tained a better understanding on how these mechanisms affected the whole circuit and 

gained some insightful intuitions.  The complete mathematical formalism of the mod-

el has been described elsewhere [5]. Schematic representations of model cells can be 

found in [13]. The dimensions of the somatic, axonic and dendritic compartments of 

model cells, the parameters of all passive and active ionic conductances, synaptic 

waveforms and synaptic conductances can be found in [13]. All simulations were 

performed using NEURON [14] running on a PC with four CPUs under Windows 10. 

2.2 Inputs 

Network was driven by an excitatory CA3 input and an inhibitory medial septum 

(MS) input. The excitatory input was modelled as the firing of 20 out of 100 CA3 

pyramidal cells at an average gamma frequency of 40 Hz (spike trains only modelled 

and not the explicit cells). PCs, BCs, AACs, BSCs in our network received excitatory 

input in their proximal-to-soma dendrites. The inhbitory input was modelled with the 

rhythmic firing of two opponent processing populations of 10 inhibitory cells each 

firing at opposite phases of a theta cycle (180° out of phase) [15]. Each such cell out-

put was modelled as bursts of action potentials using a presynaptic spike generator. 

Each spike train consisted of bursts of action potentials at a mean frequency of 8 Hz 
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for a half-theta cycle (125ms) followed by a half-theta cycle of silence (125ms).  

 

 

Fig. 2 Set of five memory patterns with 40% overlap between them. 

Due to 8% noise in the inter-spike intervals, the 10 spike trains in each population 

were asynchronous. One inhibitory population input provided inhibition to BSCs and 

OLMs during the encoding cycle, whereas the other inhibitory population input pro-

vided inhibition to AACs and BCs during the retrieval cycle. 
 

2.3 Network training and testing  

The goal of this work is to test the recall performance of the model when the network 

had already stored memory patterns without examining the exact details of the learn-

ing process. To test the recall performance of the model the methodology described in 

[5] was adopted. Briefly, a memory pattern was stored by generating weight matrices 

based on a clipped Hebbian learning rule; these weight matrices were used to pre-

specify the CA3 to CA1 PC connection weights. Without loss of generality, the input 

(CA3) and output (CA1) patterns were assumed to be the same, with each pattern 

consisting of N (N = 5 or 10 or 20) randomly chosen PCs (active cells per pattern) out 

of the population of 100. The 100 by 100 dimensional weight matrix was created by 

setting matrix entry (i, j), wij = 1 if input PC i and output PC j are both active in the 

same pattern pair; otherwise weights are 0. Any number of pattern pairs could be 

stored to create this binary weight matrix. The matrix was applied to our network 

model by connecting a CA3 input to a CA1 PC with a high AMPA conductance (gAM-

PA = 1.5 nS) if their connection weight was 1, or with a low conductance (gAMPA = 0.5 

nS) if their connection was 0. This approach is in line with experimental evidence that 

such synapses are 2-state in nature [16]. 
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2.4 Memory patterns 

We created sets of memory patterns at different sizes (1, 5, 10, 20), percent overlaps 

(0%, 10%, 20%, 40%) and number of active cells per pattern (5, 10, 20). For example, 

a 0% overlap between N patterns in a set meant no overlap between patterns 1 and 2, 

1 and 3, 1 and 4, 1 and 5, 2 and 3, 2 and 4, 2 and 5, 3 and 4, 3 and 5, and 4 and 5. A 

40% overlap between 5 patterns in a set meant that 0.4*N cells were shared between 

patterns 1 and 2, a different 0.4*N cells were shared between patterns 2 and 3, a dif-

ferent 0.4*N cells between patterns 3 and 4, a different 0.4*N cells between patterns 4 

and 5 and a different 0.4*N cells between patterns 5 and 1 (see Figure 2). For 20 ac-

tive cells per pattern that meant that a maximum of 5 patterns could be stored by a 

network of 100 PCs. For 10 active cells per pattern, then a maximum of 10 patterns 

could be stored and for 5 active cells per pattern, a maximum of 20 patterns could be 

stored. Similar maximum number of patterns could be stored for 10%, 20% and 40% 

overlap and 5, 10 and 20 active cells per pattern, respectively. In the case of 10% 

overlap, 5 active cells per pattern, the maximum number of stored patterns was not an 

integer, so this case was excluded from our simulations.  

 

2.5 Recall performance measure 

The recall performance metric used for measuring the distance between the recalled 

output pattern, B, from the required output pattern, B*, was the correlation (i.e., de-

gree of overlap) metric, calculated as the normalized dot product: 

           (1) 

where NB is the number of output units. The correlation takes a value between 0 (no 

correlation) and 1 (the vectors are identical). The higher the correlation, the better the 

recall performance. 

2.6 Mean recall quality 

Mean recall quality of our network model was defined as the mean value of all recall 

qualities estimated from each pattern presentation when an M number of patterns 

were already stored in the network. For example, when five patterns were initially 

stored in the network and pattern 1 was presented to the network during recall, then a 

recall quality value for pattern 1 was calculated. Repeating this process for each of the 

other patterns (pattern 2, pattern 3, pattern 4, and pattern 5) a recall quality value was 

calculated. The mean recall quality of the network was then the mean value of these 

individual recall qualities.  
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Fig. 3 Mean recall quality of ‘model 1’, ‘model 2’, and ‘model 3’ as a function of percent over-

lap (0%, 10%, 20%, 40%).  

2.7 Model selection 

In [5], BSC inhibition to PC dendrites acted as a global non-specific threshold ma-

chine capable of removing spurious activity at the network level during recall. In [5] 

BSC inhibition was held constant as the number of stored patterns to PC dendrites 

increased. The recall quality of the model in [5] decreased as more and more memo-

ries were loaded onto the network (see Fig. 14 in [5]). To improve the recall perfor-

mance of [5] we artificially modulated the synaptic strength of selective excitatory 

and inhibitory pathways to BSC and PC dendrites as more and more patterns were 

stored in the network (see Figures 1 and 6): 

1. Model 1: Increased CA3 feedforward excitation (weight) to BSC (Fig 6A) 

increased the frequency of its firing rate. As a result, more IPSPs were gen-

erated in the PC dendrites producing a very strong inhibitory environment 

which eliminated all spurious activity.   

2. Model 2: Increased BSC feedforward inhibition (weight) to PC dendrites (Fig 

6B) produced fewer IPSPs, but with greater amplitude, in the PC dendrites. 

3. Model 3: Increased PC feedback excitation (weight) to BSC (Fig 6C) had a 

similar effect as Model 1, but with less potency. 

Comparative analysis of the above three models’ recall performance is depicted in 

Figs 3-5. 

3 Results and discussion 

A set of patterns (1, 5, 10, 20) at various percent overlaps (0%, 10%, 20%, 40%) were 

stored by different number of ‘active cells per pattern’ (5, 10, 20) without recourse to 

a learning rule by generating a weight matrix based on a clipped Hebbian learning 

rule, and using the weight matrix to prespecify the CA3 to CA1 PC connection 

weights. To test recall of a previously stored memory pattern in the model, the entire 
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associated input pattern was applied as a cue in the form of spiking of active CA3 

inputs (those belonging to the pattern) distributed within a gamma frequency time 

window. The cue pattern was repeated at gamma frequency (40Hz). During the re-

trieval only the BSCs and OLM cells were switched on, whereas the AACs and BCs 

were switched off. The CA3 spiking drove the CA1 PCs plus the BSCs. The EC in-

put, which excited the apical dendrites of PCs, AACs and BCs, was disconnected 

during the retrieval. 

 

 

Fig. 4 Mean recall quality of ‘model 1’, ‘model 2’, and ‘model 3’ as a function of ‘active cells 

per pattern’. Five patterns were stored in a network of 100 PCs at 0%, 10%, 20% and 40% 

overlap. 

 

Fig. 5 Mean recall quality of ‘model 1’, ‘model 2’, and ‘model 3’ as a function of ‘active cells 

per pattern’. Ten patterns were stored in a network of 100 PCs at 0%, 10%, 20% and 40% over-

lap. 
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It is evident from Figure 3 that recall performance is best for all three models 

(‘model 1’, ‘model 2’, ‘model 3) when there is no overlap between patterns or when 

the overlap is small (up to 10%) regardless of the number ‘active cells per pattern’ 

(i.e. the number of cells needed to represent a memory pattern) and patterns stored in 

the network. At overlaps larger than 10%, the recall performance depends solely on 

the number of ‘active cells per pattern’ and it is completely independent of how many 

patterns are stored in the network. When just 5 ‘active cells per pattern’ are used to 

represent a memory, then the recall performance is best for all three models across all 

overlaps and irrespective of number of stored patterns. When 10 ‘active cells per pat-

tern’ are used to represent a memory, the performance of all three models are compa-

rably similar when 5 or 10 patterns are stored and across overlap percentages. When 

20 ‘active cells per pattern’ are used to represent a memory, then even for just 5 pat-

terns stored, the recall performance is consistently best for ‘model 1’ and consistently 

worst for ‘model 2’ across all overlaps. ‘Model 3’ performance is between ‘model 1’ 

and ‘model 2’. The performances of ‘model 2’ and ‘model 3’ get worse as overlap 

increases (from 10% to 40%). 

Figures 4 and 5 compare and contrast the recall performance of models 1, 2, and 3 

against number of ‘active cells per pattern’ for various overlaps (0%, 10%, 20% and 

40%) and stored patterns (5 or 10). When 5 or 10 ‘active cells per pattern’  are used to 

represent a memory, then the recall performances of all three models when number of 

stored patterns were 5 or 10 was exactly the same at 0%, 10%, 20% and 40%, respec-

tively. This means that the number of patterns stored in the network did not affect its 

recall quality. When ‘active cells per pattern’ were increased (from 10 to 20), then the 

recall qualities of models 2 and 3 progressively got worse as overlap between patterns 

increased (from 0% to 40%). ‘Model 1’ recall quality was consistently best (C = 1) 

across ‘active cells per pattern’, stored patterns, and overlap conditions.  

Why was ‘model 1’ performance so consistently better than ‘model 2’ and ‘model 

3’ across all conditions? Why the recall quality of ‘model 1’ was always perfect (C = 

1) even when more patterns were stored in the network, more/less ‘active cells per 

pattern’ were used to represent a memory and greater percentages of overlap between 

patterns were used? As we stated in section “2.7 – Model selection”, ‘model 1’ was 

the model where CA3 feedforward excitation to BSC was progressively increased as 

more and more patterns were stored, while the BSC inhibitory effect to PC dendrites 

was held fixed. ‘Model 3’ was the model where PC feedback excitation to BSC was 

progressively increased as more and more patterns were stored, while the BSC inhibi-

tory effect to PC dendrites was held fixed.  ‘Model 2’ was the model where the exact 

opposite took place: the inhibitory effect of BSC to PC dendrites progressively in-

creased as more and more patterns were stored in the network, while keeping the BSC 

firing rate constant. In all simulations, ‘model 1’ outperformed ‘model 3’ across all 

conditions (overlaps and ‘active pattern cells’). This was due to the fact that in ‘model 

1’ BSC was excited by 100 CA3-PCs at high frequency (40Hz), whereas in ‘model 3’ 

BSC was excited by 20 CA1-PCs that fired once or twice. Since in ‘model 1’ the BSC 

firing frequency response is higher than in ‘model 3’, then the postsynaptic effect of 

BSC on the PC dendrites in ‘model 1’ is higher in frequency and duration (but not in 
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Fig. 6 Schematic drawing of presynaptic BSC firing response and inhibitory postsynaptic po-

tentials (IPSPs) on PC dendrites in (A) ‘model 1’, (B) ‘model 2’ and (C) ‘model 3’. 

amplitude) than in ‘model 3’ (see Figure 6A & 6C). Thus, ‘model 1’ has a better suc-

cess at removing spurious activities and improving recall quality than ‘model 3’. 

Since the BSC frequency response in ‘model 2’ was fixed, but its postsynaptic effect 

(weight) on PC dendrites increased, then the amplitude of the inhibitory postsynaptic 

potentials (IPSPs) on PC dendrites increased (compared to the IPSP amplitudes in 

models 1 and 3), but their frequency response was low (lower than in models 1 and 3; 

see Figure 6Β). Each IPSP decayed to almost zero before another IPSP was generated 

post-synaptically on PC dendrites. 

4 Conclusions 

A bio-inspired neural model of mammalian hippocampal CA1 region [5] was em-

ployed to systematically evaluate its mean recall quality against number of stored 

patterns, percent overlaps and ‘active cells per pattern’. We modulated the strength of 

selective excitatory and inhibitory pathways to BSC and PC dendrites as more and 

more patterns were stored in the network of 100 CA1-PCs and this resulted into three 

models, the performances of which were compared against each other. Model 1 recall 

performance was excellent (C = 1) across all conditions. Model 2 performance was 

the worst. A key finding of our study is that the number of ‘active cells per pattern’ 

has a massive effect on the recall quality of the network regardless of how many pat-

tern are stored in it. As the number of dedicated cells representing a memory (‘active 

cells per pattern’) decrease, the memory capacity of the CA1-PC network increases, 
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so interference effects between stored patterns decrease, and mean recall quality in-

creases. Another key finding of our study is that increased firing frequency response 

of a presynaptic inhibitory cell (BSC) inhibiting a network of PCs has a better success 

at removing spurious activity at the network level and thus improving recall quality 

than an increased synaptic efficacy of a presynaptic inhibitory cell (BSC) on a 

postsynaptic PC while keeping its presynaptic firing rate fixed.   
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