43 research outputs found
Enlarged infarct volume and loss of BDNF mRNA induction following brain ischemia in mice lacking FGF-2
FGF-2, a potent multifunctional and neurotrophic growth factor, is widely expressed in the brain and upregulated in cerebral ischemia. Previous studies have shown that intraventricularly or systemically administered FGF-2 reduces the size of cerebral infarcts. Whether endogenous FGF-2 is beneficial for the outcome of cerebral ischemia has not been investigated. We have used mice with a null mutation of the fgf2 gene to explore the relevance of endogenous FGF-2 in brain ischemia. Focal cerebral ischemia was produced by occlusion of the middle cerebral artery (MCAO). We found a 75% increase in infarct volume in fgf2 knock-out mice versus wild type littermates (P < 0.05). This difference in the extent of ischemic damage was observed after 24 h, and correlated with decreased viability in fgf2 mutant mice following MCA occlusion. Increased infarct volume in fgf2 null mice was associated with a loss of induction in hippocampal BDNF and trkB mRNA expression. These findings indicate that signaling through trkB may contribute to ameliorating brain damage following ischemia and that bdnf and trkB may be target genes of FGF-2. Together, our data provide the first evidence that endogenous FGF-2 is important in coping with ischemic brain damage suggesting fgf2 as one crucial target gene for new therapeutic strategies in brain ischemia
The role of Phox2B in chromaffin cell development
AbstractPhox2B, a homeodomain transcription factor closely related to Phox2A, is expressed in peripheral and central noradrenergic neurons. In neural crest (NC) derivatives Phox2B is restricted to sympathetic and parasympathetic ganglia, enteric neurons, and adrenal and extraadrenal chromaffin cells. Similar to MASH-1, Phox2B has been implicated in synchronizing pan-neuronal and catecholaminergic phenotype-specific aspects of neurogenesis. The role of Phox2B for the differentiation of the neuroendocrine NC derivatives, the adrenal medullary chromaffin cells, has not been explored. We have previously reported that in MASH-1-deficient mice most chromaffin cells are arrested at the early neuroblast stage and lack catecholaminergic differentiation. We show now that in Phox2B knockout/lacZ knockin mice the maturation of presumptive chromaffin cells is arrested at an even earlier stage of development. The cells lack the catecholaminergic marker enzyme TH and fail to form a centrally located medulla. In contrast to MASH-1 (−/−) mice they do not express dHand, Phox2A, c-ret, neurofilament, neuron-specific tubulin, and NCAM and appear ultrastructurally more immature. Many of these cells die by apoptosis. Despite the complete lack of differentiation, few lacZ-positive adrenal cells can still be found at E16.5. We conclude that Phox2B regulates very early events in the differentiation of adrenal chromaffin cells distinct to steps, which essentially require MASH-1
MiR-124 is differentially expressed in derivatives of the sympathoadrenal cell lineage and promotes neurite elongation in chromaffin cells
The neural-crest-derived sympathoadrenal cell lineage gives rise to sympathetic neurons and to endocrine chromaffin cells of the adrenal medulla. Both cell types express a largely overlapping set of genes, including those coding for the molecular machinery related to the synthesis and exocytotic release of catecholamines. During their early development, sympathetic neurons and chromaffin cells rely on a shared transcription factor network that controls the establishment of these common features. Despite many similarities, mature sympathetic neurons and chromaffin cells significantly differ regarding their morphology and function. Most prominently, sympathetic neurons possess axons that are absent in mammalian adrenal chromaffin cells. The molecular mechanism underlying the divergent development of sympathoadrenal cells into neuronal and endocrine cells remains elusive. Mutational inactivation of the ribonuclease dicer hints at the importance of microRNAs in this diversification. We show here that miR-124 is detectable in developing sympathetic neurons but absent in chromaffin cell precursors. We further demonstrate that miR- 124 promotes neurite elongation when transfected into cultured chromaffin cells indicating its capability to support the establishment of a neuronal morphology in non- neuronal sympathoadrenal cells. Our results also show that treatment of PC12 cells with the neurotrophin nerve growth factor leads to an upregulation of miR-124 expression and that inhibition of miR-124 reduces nerve-growth-factor-induced neurite outgrowth in PC12 cells. Thus, our data indicate that miR-124 contributes to the establishment of specific neuronal features in developing sympathoadrenal cells
Persistent expression of BMP-4 in embryonic chick adrenal cortical cells and its role in chromaffin cell development
Background: Adrenal chromaffin cells and sympathetic neurons both originate from the neural crest, yet signals that trigger chromaffin development remain elusive. Bone morphogenetic proteins (BMPs) emanating from the dorsal aorta are important signals for the induction of a sympathoadrenal catecholaminergic cell fate. Results: We report here that BMP-4 is also expressed by adrenal cortical cells throughout chick embryonic development, suggesting a putative role in chromaffin cell development. Moreover, bone morphogenetic protein receptor IA is expressed by both cortical and chromaffin cells. Inhibiting BMP-4 with noggin prevents the increase in the number of tyrosine hydroxylase positive cells in adrenal explants without affecting cell proliferation. Hence, adrenal BMP-4 is likely to induce tyrosine hydroxylase in sympathoadrenal progenitors. To investigate whether persistent BMP-4 exposure is able to induce chromaffin traits in sympathetic ganglia, we locally grafted BMP-4 overexpressing cells next to sympathetic ganglia. Embryonic day 8 chick sympathetic ganglia, in addition to principal neurons, contain about 25% chromaffin-like cells. Ectopic BMP-4 did not increase this proportion, yet numbers and sizes of "chromaffin" granules were significantly increased. Conclusions: BMP-4 may serve to promote specific chromaffin traits, but is not sufficient to convert sympathetic neurons into a chromaffin phenotype
Regulation of GDF-15, a distant TGF-β superfamily member, in a mouse model of cerebral ischemia
GDF-15 is a novel distant member of the TGF-β superfamily and is widely distributed in the brain and peripheral nervous system. We have previously reported that GDF-15 is a potent neurotrophic factor for lesioned dopaminergic neurons in the substantia nigra, and that GDF-15-deficient mice show progressive postnatal losses of motor and sensory neurons. We have now investigated the regulation of GDF-15 mRNA and immunoreactivity in the murine hippocampal formation and selected cortical areas following an ischemic lesion by occlusion of the middle cerebral artery (MCAO). MCAO prominently upregulates GDF-15 mRNA in the hippocampus and parietal cortex at 3 h and 24 h after lesion. GDF-15 immunoreactivity, which is hardly detectable in the unlesioned brain, is drastically upregulated in neurons identified by double-staining with NeuN. NeuN staining reveals that most, if not all, neurons in the granular layer of the dentate gyrus and pyramidal layers of the cornu ammonis become GDF-15-immunoreactive. Moderate induction of GDF-15 immunoreactivity has been observed in a small number of microglial cells identified by labeling with tomato lectin, whereas astroglial cells remain GDF-15-negative after MCAO. Comparative analysis of the size of the infarcted area after MCAO in GDF-15 wild-type and knockout mice has failed to reveal significant differences. Together, our data substantiate the notion that GDF-15 is prominently upregulated in the lesioned brain and might be involved in orchestrating post-lesional responses other than the trophic support of neurons