12 research outputs found

    Atomic Layer Deposition of Molybdenum and Tungsten Oxide Thin Films Using Heteroleptic Imido-Amidinato Precursors : Process Development, Film Characterization, and Gas Sensing Properties

    Get PDF
    Heteroleptic bis(tert-butylimido)bis(N,N'-diisopropylacetamidinato) compounds of molybdenum and tungsten are introduced as precursors for atomic layer deposition of tungsten and molybdenum oxide thin films using ozone as the oxygen source. Both precursors have similar thermal properties but exhibit different growth behaviors. With the molybdenum precursor, high growth rates up to 2 angstrom/cycle at 300 degrees C and extremely uniform films are obtained, although the surface reactions are not completely saturative. The corresponding tungsten precursor enables saturative film growth with a lower growth rate of 0.45 angstrom/cycle at 300 degrees C. Highly pure films of both metal oxides are deposited, and their phase as well as stoichiometry can be tuned by changing the deposition conditions. The WO films the crystallize as gamma-WO3 at 300 degrees C and above, whereas films deposited at lower temperatures are amorphous. Molybdenum oxide can be deposited as either amorphous (= 325 degrees C) films. MoOr films are further characterized by synchrotron photoemission spectroscopy and temperature-dependent resistivity measurements. A suboxide MoOx film deposited at 275 degrees C is demonstrated to serve as an efficient hydrogen gas sensor at a low operating temperature of 120 degrees C.Peer reviewe

    Adsorbed Oxygen Ions and Oxygen Vacancies: Their Concentration and Distribution in Metal Oxide Chemical Sensors and Influencing Role in Sensitivity and Sensing Mechanisms

    No full text
    Oxidation reactions on semiconducting metal oxide (SMOs) surfaces have been extensively worked on in catalysis, fuel cells, and sensors. SMOs engage powerfully in energy-related applications such as batteries, supercapacitors, solid oxide fuel cells (SOFCs), and sensors. A deep understanding of SMO surface and oxygen interactions and defect engineering has become significant because all of the above-mentioned applications are based on the adsorption/absorption and consumption/transportation of adsorbed (physisorbed-chemisorbed) oxygen. More understanding of adsorbed oxygen and oxygen vacancies (VO•,VO••) is needed, as the former is the vital requirement for sensing chemical reactions, while the latter facilitates the replenishment of adsorbed oxygen ions on the surface. We determined the relation between sensor response (sensitivity) and the amounts of adsorbed oxygen ions (O2(ads)−, O(ads), −O2(ads)2−, O(ads)2−), water/hydroxide groups (H2O/OH−), oxygen vacancies (VO•, VO••), and ordinary lattice oxygen ions (Olattice2−) as a function of temperature. During hydrogen (H2) testing, the different oxidation states (W6+, W5+, and W4+) of WO3 were quantified and correlated with oxygen vacancy formation (VO•, VO••). We used a combined application of XPS, UPS, XPEEM-LEEM, and chemical, electrical, and sensory analysis for H2 sensing. The sensor response was extraordinarily high: 424 against H2 at a temperature of 250 °C was recorded and explained on the basis of defect engineering, including oxygen vacancies and chemisorbed oxygen ions and surface stoichiometry of WO3. We established a correlation between the H2 sensing mechanism of WO3, sensor signal magnitude, the amount of adsorbed oxygen ions, and sensor testing temperature. This paper also provides a review of the detection, quantification, and identification of different adsorbed oxygen species. The different surface and bulk-sensitive characterization techniques relevant to analyzing the SMOs-based sensor are tabulated, providing the sensor designer with the chemical, physical, and electronic information extracted from each technique

    Combined Galvanostatic and Potentiostatic Plasma Electrolytic Oxidation of Titanium in Different Concentrations of H2SO4

    No full text
    We report on plasma electrolytic oxidation of titanium, employing a technique with combined potentiostatic and galvanostatic control. The effect of different H 2 SO 4 electrolyte concentrations on the titanium oxide formation was studied sytematically. The titanium oxide consisted of two distinguishable layers. The upper layer is porous, up to few micrometers thick and primarily rutile, while the interlayer is compact, comparatively thin and is associated to anatase formation. The electrolyte concentration changed substantially layer thickness, porosity and phase composition, as deduced from scanning electron microscopy, X-ray diffraction and Raman spectroscopy

    From precursor chemistry to gas sensors

    No full text
    The identification of bis-3-(N,N\it N,N-dimethylamino)propyl zinc ([Zn(DMP)2_2], BDMPZ) as a safe and potential alternative to the highly pyrophoric diethyl zinc (DEZ) as atomic layer deposition (ALD) precursor for ZnO thin films is reported. Owing to the intramolecular stabilization, BDMPZ is a thermally stable, volatile, nonpyrophoric solid compound, however, it possesses a high reactivity due to the presence of Zn-C and Zn-N bonds in this complex. Employing this precursor, a new oxygen plasma enhanced (PE)ALD process in the deposition temperature range of 60 and 160 °C is developed. The resulting ZnO thin films are uniform, smooth, stoichiometric, and highly transparent. The deposition on polyethylene terephthalate (PET) at 60 °C results in dense and compact ZnO layers for a thickness as low as 7.5 nm with encouraging oxygen transmission rates (OTR) compared to the bare PET substrates. As a representative application of the ZnO layers, the gas sensing properties are investigated. A high response toward NO2_2 is observed without cross-sensitivities against NH3_3 and CO. Thus, the new PEALD process employing BDMPZ has the potential to be a safe substitute to the commonly used DEZ processes
    corecore