11 research outputs found

    Impact of prescription isodose level and collimator selection on dose homogeneity and plan quality in robotic radiosurgery

    No full text
    Purpose!#!In stereotactic radiosurgery (SRS), prescription isodoses and resulting dose homogeneities vary widely across different platforms and clinical entities. Our goal was to investigate the physical limitations of generating dose distributions with an intended level of homogeneity in robotic SRS.!##!Methods!#!Treatment plans for non-isocentric irradiation of 4 spherical phantom targets (volume 0.27-7.70 ml) and 4 clinical targets (volume 0.50-5.70 ml) were calculated using Sequential (phantom) or VOLO!##!Results!#!Dose conformity was generally high (nCI ≤ 1.25) and varied little with PIL. For all targets and collimator sets, V12Gy was highest for PIL ≥ 80% and lowest for PIL ≤ 65%. The impact of PIL on V12Gy was highest for isocentric irradiation and lowest for clinical targets (VOLO!##!Conclusion!#!Inhomogeneous dose distributions with PIL ≤ 70% can be used to minimize dose to normal tissue. PIL ≥ 90% is associated with a marked and significant increase in off-target dose exposure. Careful selection of collimators during planning is even more important

    Radiotoxicity in robotic radiosurgery: proposing a new quality index for optimizing the treatment planning of brain metastases

    No full text
    Background: As irradiated brain volume at 12 Gy (V12) is a predictor for radionecrosis, the purpose of the study was to develop a model for Cyberknife (CK) plans that is able to predict the lowest achievable V12 at a given tumor size and prescription dose (PD), and to suggest a new quality index regarding V12 for optimizing the treatment planning of brain metastases. Method: In our model V12 was approximated as a spherical shell around the tumor volume. The radial distance between tumor surface and the 12 Gy isodose line was calculated using an approximation of the mean dose gradient in that area. Assuming a radially symmetrical irradiation from the upper half space, the dose distribution is given by the superposition of single fields. The dose profiles of a single field were derived by the measured offcenter ratios (OCR) of the CK system. Using the calculated gradients of the sum dose profiles, minimal-V12 was estimated for different tumor sizes. The model calculation was tested using a phantom dataset and retrospectively applied on clinical cases. Results: Our model allows the prediction of a best-case scenario for V12 at a given tumor size and PD which was confirmed by the results of the isocentric phantom plans. The results of the non-isocentric phantom plans showed that an optimization of coverage caused an increase in V12. This was in accordance with the results of the retrospective analysis. V12 s of the clinical cases were on average twice that of the predicted model calculation. A good agreement was achieved for plans with an optimal conformity index (nCI). Re-planning of cases with high V12 showed that lower values could be reached by selecting smaller collimators and by allowing a larger number of total MU and more MU per beam. Conclusions: V12 is a main parameter for assessing plan quality in terms of radiotoxicity. The index f12 defined as the ratio of V12 from the actual plan with the evaluated V12 from our model describes the conformity of an optimally possible V12 and thus can be used as a new quality index for optimizing treatment plans

    Determining the orientation angle of directional leads for deep brain stimulation using computed tomography and digital x-ray imaging: A phantom study

    No full text
    Purpose: Orientating the angle of directional leads for deep brain stimulation (DBS) in an axial plane introduces a new degree of freedom that is indicated by embedded anisotropic directional markers. Our aim was to develop algorithms to determine lead orientation angles from computed tomography (CT) and stereotactic x-ray imaging using standard clinical protocols, and subsequently assess the accuracy of both methods. Methods: In CT the anisotropic marker artifact was taken as a signature of the lead orientation angle and analyzed using discrete Fourier transform of circular intensity profiles. The orientation angle was determined from phase angles at a frequency 2/360(circle) and corrected for aberrations at oblique leads. In x-ray imaging, frontal and lateral images were registered to stereotactic space and sub-images containing directional markers were extracted. These images were compared with projection images of an identically located virtual marker at different orientation angles. A similarity index was calculated and used to determine the lead orientation angle. Both methods were tested using epoxy phantoms containing directional leads (Cartesia(TM), Boston Scientific, Marlborough, USA) with known orientation. Anthropomorphic phantoms were used to compare both methods for DBS cases. Results: Mean deviation between CT and x-ray was 1.5(circle) +/- 3.6(circle) (range: - 2.3(circle) to 7.9(circle)) for epoxy phantoms and 3.6(circle) +/- 7.1(circle) (range: - 5.6(circle) to 14.6(circle)) for anthropomorphic phantoms. After correction for imperfections in the epoxy phantoms, the mean deviation from ground truth was 0.0(circle) +/- 5.0(circle) (range: - 12(circle) to 14(circle)) for x-ray. For CT the results depended on the polar angle of the lead in the scanner. Mean deviation was - 0.3(circle) +/- 1.9(circle) (range: - 4.6(circle) to 6.6(circle)) or 1.6(circle) +/- 8.9(circle) (range: - 23(circle) to 34(circle)) for polar angles 40(circle). Conclusions: The results show that both imaging modalities can be used to determine lead orientation angles with high accuracy. CT is superior to x-ray imaging, but oblique leads (polar angle > 40(circle)) show limited precision due to the current design of the directional marker. (C)2017 American Association of Physicists in Medicin

    Impact of prescription isodose level and collimator selection on dose homogeneity and plan quality in robotic radiosurgery

    No full text
    Purpose In stereotactic radiosurgery (SRS), prescription isodoses and resulting dose homogeneities vary widely across different platforms and clinical entities. Our goal was to investigate the physical limitations of generating dose distributions with an intended level of homogeneity in robotic SRS. Methods Treatment plans for non-isocentric irradiation of 4 spherical phantom targets (volume 0.27-7.70 ml) and 4 clinical targets (volume 0.50-5.70 ml) were calculated using Sequential (phantom) or VOLOTM (clinical) optimizers (Accuray, Sunnyvale, CA, USA). Dose conformity, volume of 12 Gy isodose (V12Gy) as a measure for dose gradient, and treatment time were recorded for different prescribed isodose levels (PILs) and collimator settings. In addition, isocentric irradiation of phantom targets was examined, with dose homogeneity modified by using different collimator sizes. Results Dose conformity was generally high (nCI = 80% and lowest for PIL = 90% is associated with a marked and significant increase in off-target dose exposure. Careful selection of collimators during planning is even more important

    DiODe: Directional Orientation Detection of Segmented Deep Brain Stimulation Leads: A Sequential Algorithm Based on CT Imaging

    No full text
    Background: Directional deep brain stimulation (DBS) allows steering the stimulation in an axial direction which offers greater flexibility in programming. However, accurate anatomical visualization of the lead orientation is required for interpreting the observed stimulation effects and to guide programming. Objectives: In this study we aimed to develop and test an accurate and robust algorithm for determining the orientation of segmented electrodes based on standard postoperative CT imaging used in DBS. Methods: Orientation angles of directional leads (Cartesia (TM); Boston Scientific, Marlborough, MA, USA) were determined using CT imaging. Therefore, a sequential algorithm was developed that quantitatively compares the similarity of the observed CT artifacts with calculated artifact patterns based on the lead's orientation marker and a geometric model of the segmented electrodes. Measurements of seven ground truth phantoms and three leads with 60 different configurations of lead implantation and orientation angles were analyzed for validation. Results: The accuracy of the determined electrode orientation angles was -0.6 +/- 1.5 degrees (range: -5.4 to 4.2 degrees). This accuracy proved to be sufficiently high to resolve even subtle differences between individual leads. Conclusions: The presented algorithm is user independent and provides highly accurate results for the orientation of the segmented electrodes for all angular constellations that typically occur in clinical cases. (C) 2018 S. Karger AG, Base

    Accuracy of Robotic and Frame-Based Stereotactic Neurosurgery in a Phantom Model

    No full text
    BackgroundThe development of robotic systems has provided an alternative to frame-based stereotactic procedures. The aim of this experimental phantom study was to compare the mechanical accuracy of the Robotic Surgery Assistant (ROSA) and the Leksell stereotactic frame by reducing clinical and procedural factors to a minimum. MethodsTo precisely compare mechanical accuracy, a stereotactic system was chosen as reference for both methods. A thin layer CT scan with an acrylic phantom fixed to the frame and a localizer enabling the software to recognize the coordinate system was performed. For each of the five phantom targets, two different trajectories were planned, resulting in 10 trajectories. A series of five repetitions was performed, each time based on a new CT scan. Hence, 50 trajectories were analyzed for each method. X-rays of the final cannula position were fused with the planning data. The coordinates of the target point and the endpoint of the robot- or frame-guided probe were visually determined using the robotic software. The target point error (TPE) was calculated applying the Euclidian distance. The depth deviation along the trajectory and the lateral deviation were separately calculated. ResultsRobotics was significantly more accurate, with an arithmetic TPE mean of 0.53 mm (95% CI 0.41-0.55 mm) compared to 0.72 mm (95% CI 0.63-0.8 mm) in stereotaxy (p < 0.05). In robotics, the mean depth deviation along the trajectory was -0.22 mm (95% CI -0.25 to -0.14 mm). The mean lateral deviation was 0.43 mm (95% CI 0.32-0.49 mm). In frame-based stereotaxy, the mean depth deviation amounted to -0.20 mm (95% CI -0.26 to -0.14 mm), the mean lateral deviation to 0.65 mm (95% CI 0.55-0.74 mm). ConclusionBoth the robotic and frame-based approach proved accurate. The robotic procedure showed significantly higher accuracy. For both methods, procedural factors occurring during surgery might have a more relevant impact on overall accuracy
    corecore