10 research outputs found

    Transport concept for highly activated antiproton production targets

    Get PDF

    Introduction to Accelerator Physics 2016

    No full text

    Status of thermomechanical studies of the SIS100 emergency beam dump system

    No full text
    The heavy ion synchrotron SIS100 is the flagship accelerator of the Facility for Antiproton and Ion Research (FAIR) currently under construction at GSI, Darmstadt. It will provide high intensity beams of particles ranging from protons to uranium ions at beam rigidities up to 100 Tm. Part of the machine protection system is an emergency beam dump that is partly inside the vacuum system and partly outside. The wide range of particles means that all components of the dump system are potentially exposed to high energy deposition densities at short time scales. The resulting shock waves are challenging for the mechanical stability of the components, including the vacuum window between inner and outer part of the dump. In this paper we present the status of thermomechanical simulations regarding the response of dump components to the most challenging beam impact scenarios. A first adaption to the vacuum window is assessed regarding it’s potential to mitigate risks of failure

    Status of high intensity proton injector for Facility for Antiproton and Ion Research

    No full text
    International audienceThe high intensity proton injector for the international accelerator Facility for Antiproton and Ion Research located at GSI-Darmstadt in Germany consists of a pulsed 2.45 GHz microwave ion source, a Low Energy Beam Transport (LEBT), and an electrostatic chopper matching the proton beam to the radio frequency quadrupole. The ion source is based on electron cyclotron resonance plasma production and it has to provide a proton beam at 95 keV energy and up to 100 mA current. The LEBT system with two short solenoids each including two magnetic steerers will transport the proton beam into the compact proton linac, accelerating it to the energy of 68 MeV and serving as the injector of the upgraded heavy ion synchrotron (SIS18). This paper describes the commissioning of the proton injector including beam characterization measurements that have been done at CEA/Saclay in France and is currently at the final commissioning stage

    Neoadjuvant image-guided helical intensity modulated radiotherapy of extremity sarcomas – a single center experience

    No full text
    Abstract Background Advanced radiotherapy (RT) techniques allow normal tissue to be spared in patients with extremity soft tissue sarcoma (STS). This work aims to evaluate toxicity and outcome after neoadjuvant image-guided radiotherapy (IGRT) as helical intensity modulated radiotherapy (IMRT) with reduced margins based on MRI-based target definition in patients with STS. Methods Between 2010 to 2014, 41 patients with extremity STS were treated with IGRT delivered as helical IMRT on a tomotherapy machine. The tumor site was in the upper extremity in 6 patients (15%) and lower extremity in 35 patients (85%). Reduced margins of 2.5 cm in longitudinal direction and 1.0 cm in axial direction were used to expand the MRI-defined gross tumor volume, including peritumoral edema, to the clinical target volume. An additional margin of 5 mm was added to receive the planning target volume. The full total dose of 50 Gy in 2 Gy fractions was sucessfully applied in 40 patients. Two patients received chemotherapy instead of surgery due to systemic progression. All patients were included into a strict follow-up program and were seen interdisciplinarily by the Departments of Orthopaedic Surgery and Radiation Oncology. Results Thirty eight patients that received total RT total dose and subsequent resection were analyzed for outcome. After a median follow-up of 38.5 months cumulative OS, local PFS and systemic PFS at 2 years were determined at 78.2, 85.2 and 54.5%, respectively. Two of 6 local recurrences were proximal marginal misses. Negative resection margins were achieved in 84% of patients. The rate of major wound complications was comparable to previous IMRT studies with 36.8%. RT was overall tolerable with low toxicity rates. Conclusions IMRT-IGRT offers neoadjuvant treatment for extremity STS with reduced safety margins and thus low toxicity rates. Wound complication rates were comparable to previously reported frequencies. Two reported marginal misses suggest a word of caution for reduction of longitudinal safety margins

    Relationship Among a Supernova, a Transition of Polarity of the Geomagnetic Field and the Pliocene-Pleistocene Boundary

    No full text
    After the Middle Miocene, two important climatic changes took place, consisting mainly of cooling in both hemispheres. One occurred between 7.0 and 5.4 Ma and another at the end of the Pliocene, which marked the beginning of the Pleistocene in approximately 2.58 Ma. The proposal of thispresentation is to analyze diverse forcings of these climatic changes, such as the influence of the joint occurrence of reversions of the geomagnetic field andexplosions of a supernova. These events occurred coincidentally with thecooling of Earth. Also, biological changes in those time intervals are analyzed,especially the evolution of the Hominins since the oldest hominin fossils. Thecharacteristics of the Galactic Cosmic Rays, its influence on the climate and its potential mutogenetic effect were taken into account.Briefly, according to our analysis, it seems to be evident that together withother factors, the joint occurrence of the explosion of a supernova at less than100 pc from the Earth and the weakening and/or reversion of the GeomagneticField was an important factor that promoted these two climatic and ecosystemchanges.Fil: Compagnucci, Rosa Hilda. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Orgeira, Maria Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; ArgentinaFil: Sinito, Ana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Cappellotto, Luiggina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; ArgentinaFil: Plastani, María Sofía. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; Argentin
    corecore