2 research outputs found

    Wavelet Analysis Applied on EEG Signals for Identification of Preictal States in Epileptic Patients / An谩lise wavelet aplicada em sinais de EEG para identifica莽茫o de estados pr茅-letais em pacientes epil茅pticos

    Get PDF
    The discrimination of the interictal and preictal states in epilepsy contributes to the construction of an efficient system of seizure prediction. Here, we performed the classification of the interictal and preictal states for EEG signals of the scalp. The energies of the levels obtained by the signal decomposition of the Wavelet Discrete Transform were used as features for classification. The kNN and SVM classifiers were used in the analysis of the individual EEG channels, which gave indications that the occipital lobe region channels are the most relevant to differentiate between the interictal and preictal states. Using these channels, the classification into two states achieved accuracy of 97.29%, sensitivity of 96.25% and specificity of 98.33%. In addition, the different frequency ranges obtained by Wavelet for the classification were analyzed, and it was observed that the range of 32 Hz to 128 Hz presented greater relevance in the task

    A Class-Independent Texture-Separation Method Based on a Pixel-Wise Binary Classification

    No full text
    Texture segmentation is a challenging problem in computer vision due to the subjective nature of textures, the variability in which they occur in images, their dependence on scale and illumination variation, and the lack of a precise definition in the literature. This paper proposes a method to segment textures through a binary pixel-wise classification, thereby without the need for a predefined number of textures classes. Using a convolutional neural network, with an encoder–decoder architecture, each pixel is classified as being inside an internal texture region or in a border between two different textures. The network is trained using the Prague Texture Segmentation Datagenerator and Benchmark and tested using the same dataset, besides the Brodatz textures dataset, and the Describable Texture Dataset. The method is also evaluated on the separation of regions in images from different applications, namely remote sensing images and H&E-stained tissue images. It is shown that the method has a good performance on different test sets, can precisely identify borders between texture regions and does not suffer from over-segmentation
    corecore