29 research outputs found

    The effect of different dietary zinc sources on mineral deposition and antioxidant indices in rabbit tissues

    Get PDF
    [EN] The purpose of this study was to compare the effect of dietary zinc from inorganic and organic sources on the concentration of Zn, Cu, Mn and Fe in plasma, tissues and faeces of rabbits. Simultaneously, the activities of total superoxide dismutase (SOD), specific Cu/Zn SOD, glutathione peroxidase (GPx), lipid peroxidation and total antioxidant capacity (TAC) in liver and kidney were also determined. Ninety-six 49-day-old broiler rabbits were allocated to 4 dietary treatments, each replicated 6 times with 4 animals per replicate. For the subsequent 6 wk, the rabbits were fed an identical basal diet (BD) supplemented with an equivalent dose of Zn (100 mg/kg) from different sources. Group 1 (control) received the unsupplemented BD, while the BD for groups 2, 3 and 4 was supplemented with Zn from Zn sulphate, Zn chelate of glycine hydrate (Zn-Gly) and Zn chelate of protein hydrolysate (Zn-Pro), respectively. The intake of dietary Zn sulphate resulted in an increase in Zn plasma concentration (1.85 vs. 1.48 mg/L; P<0.05) compared to the control group. Feeding the diets enriched with Zn increased the deposition of Zn in the liver (P<0.05), irrespective of the Zn source. The addition of Zn-Pro resulted in significantly higher Cu uptake in liver (P<0.05) than in the control and Zn sulphate group (56.0 vs. 35.0 and 36.7 mg/kg dry matter (DM), respectively). Neither Mn nor Fe concentration in plasma and tissues were affected by dietary Zn supplementation, with the exception of Fe deposition in muscle, which was significantly decreased (P<0.05) in rabbits supplemented with inorganic Zn sulphate compared to control and Zn-Gly group (9.8 vs. 13.3 and 12.2 mg/kg DM, respectively). Intake of organic Zn-Gly significantly increased the activities of total SOD (43.9 vs. 35.9 U/mg protein; P<0.05) and Cu/Zn SOD (31.1 vs. 23.8 U/mg protein; P<0.01) as well as TAC (37.8 vs. 31.2 μmol/g protein; P<0.05) in the kidney when compared to that of the control group. The presented results did not indicate any differences between dietary Zn sources in Zn deposition and measured antioxidant indices in rabbit tissues. Higher dietary Zn intake did not cause any interactions with respect to Mn, Cu and Fe deposition in liver and kidney tissues, but did increase the faecal mineral concentrations. Dietary organic Zn-Gly improved the antioxidant status in rabbit kidney.This work was supported by the Slovak Research and Development Agency under contract nº. APVV-0667-12 and by the project ITMS 26220220204.Čobanová, K.; Chrastinová, Ľ.; Chrenková, M.; Polačiková, M.; Formelová, Z.; Ivanišinová, O.; Ryzner, M.... (2018). The effect of different dietary zinc sources on mineral deposition and antioxidant indices in rabbit tissues. World Rabbit Science. 26(3):241-248. https://doi.org/10.4995/wrs.2018.9206SWORD241248263Alscher D.M., Braun N., Biegger D., Stuelten C., Gawronski K., Mürdter T.E., Kuhlmann U., Fritz P. 2005. Induction of metallothionein in proximal tubular cells by zinc and its potential as an endogenous antioxidant. Kidney Blood Press Res., 28: 127-133. https://doi.org/10.1159/000084921Ao T., Pierce J.L., Power R., Pescatore A.J., Cantor A.H., Dawson K.A., Ford M.J. 2009. Effects of feeding different forms of zinc and copper on the performance and tissue mineral content of chicks. Poultry Sci., 88: 2171-2175. https://doi.org/10.3382/ps.2009-00117AOAC 2005. Official Methods of Analysis. 18th Edition. Association of Official Analytical Chemists, Gaithersburg, USA.Bao Y.M., Choct M., Iji P.A., Brueton K. 2007. Effect of organically complexed copper, iron, manganese and zinc on broiler performance, mineral excretion and accumulation in tissues. J. Appl. Poult, Res., 16: 448-455. https://doi.org/10.1093/japr/16.3.448Benzie I.F.F., Strain J.J. 1996. The ferric reducing ability of plasma (FRAP) as a measure of "Antioxidant Power": The FRAP Assay. Anal. Biochem., 239: 70-76. https://doi.org/10.1006/abio.1996.0292Bulbul A.T., Bulbul S., Kucukersan M., Sireli M., Eryavuz A. 2008. Effect of dietary supplementation of organic and inorganic Zn, Cu and Mn on oxidant/antioxidant balance in laying hens. Kafkas Univ. Vet. Fak., 14: 19-24.Bradford M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein-dye binding. Anal. Biochem., 72: 248-254.https://doi.org/10.1016/0003-2697(76)90527-3Casado C., Moya V.J., Pascual J.J., Blas E., Cervera C. 2011. Effect of oxidation state of dietary sunflower oil and dietary zinc and α-tocopheryl acetate supplementation on performance of growing rabbits. World Rabbit Sci., 19: 191-202. https://doi.org/10.4995/wrs.2011.940Cortese M.M., Suschek C.V., Wetzel W., Kroncke K.D., Kolb-Bachofen V. 2008. Zinc protects endothelial cells from hydrogen peroxide via Nrf2-dependent stimulation of glutathione biosynthesis. Free Radic Biol Med., 44: 2002-2012. https://doi.org/10.1016/j.freeradbiomed.2008.02.013Farombi E.O., Hansen M., Raven-Haren G., Moller P., Dragsted L.O. 2004. Commonly consumed and naturally occuring dietary substances affect biomarkers of oxidative stress and DNA damage in the healthy rats. Food Chem. Toxicol., 2: 15-22.Gresakova L., Venglovska K., Cobanova K. 2016. Dietary manganese source does not affect Mn, Zn and Cu tissue deposition and the activity of manganese-containing enzymes in lambs. J. Trace Elem. Med. Biol. 38: 138-143. https://doi.org/10.1016/j.jtemb.2016.05.003Chrastinová Ľ., Čobanová K., Chrenková M., Poláčiková M., Formelová Z., Lauková A., Ondruška Ľ., Pogány Simonová M., Strompfová V., Mlyneková Z., Kalafová A., Grešáková Ľ. 2016. Effect of dietary zinc supplementation on nutrient digestibility and fermentation characteristics of caecal content in physiological experiment with young rabbits. Slovak J. Anim. Sci., 49: 23-31.Ivanišinová O., Grešáková Ľ., Ryzner M., Oceľová V., Čobanová K. 2016. Effects of feed supplementation with various zinc sources on mineral concentration and selected antioxidant indices in tissues and plasma of broiler chickens. Acta Vet. Brno, 85: 285-291. https://doi.org/10.2754/avb201685030285Jo C., Ahn D.U. 1998. Fluorometric analysis of 2-thiobarbituric acid reactive substances in turkey. Poultry Sci., 77: 475-480. https://doi.org/10.1093/ps/77.3.475King J.C., Brown K.H., Gibson R.S., Krebs N.F., Lowe N.M., Siekmann J.H., Raiten D.J. 2016. Biomarkers of nutrition for development (BOND) - Zinc review. J. Nutr., 146: 858S-885S. https://doi.org/10.3945/jn.115.220079King J.C., Shames D.M., Woodhouse L.R. 2000. Zinc homeostasis in humans. J. Nutr., 130: 1360S-1366S. https://doi.org/10.1093/jn/130.5.1360SKwiecien M., Winiarska-Mieczan A., Milczarek A., Klebaniuk R. 2017. Biological response of broiler chickens to decreasing dietary inclusion levels of zinc glycine chelate. Biol. Trace Elem. Res., 175: 204-213. https://doi.org/10.1007/s12011-016-0743-yMa W., Niu H., Feng J., Wang Y., Feng J. 2011. Effects of zinc glycine chelate on oxidative stress, contents of trace elements, and intestinal morphology in broilers. Biol. Trace Elem. Res., 142: 546-556. https://doi.org/10.1007/s12011-010-8824-9Marklund S., Marklund G. 1974. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem., 47: 469-474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.xNessrin S., Abdel-Khalek A.M., Gad S.M. 2012. Effect of supplemental zinc, magnesium or iron on performance and some physiological traits of growing rabbits. Asian J. Poult. Sci., 6: 23-30. https://doi.org/10.3923/ajpsaj.2012.23.30Nutritional Research Council (NRC), 1977. Nutrient requirements of rabbits. National Academies of Science, Washington DC, USA.Oteiza P.I. 2012. Zinc and the modulation of redox homeostasis. Free Radic. Biol. Med., 53: 1748-1759. https://doi.org/10.1016/j.freeradbiomed.2012.08.568Paglia D.E., Valentine W.N. 1967. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med., 70: 158-169.Powell S.R. 2000. The antioxidant properties of zinc. J. Nutr., 130: 1447S-1454S. https://doi.org/10.1093/jn/130.5.1447SSalomonsson A.C., Theander O., Westerlund O. 1984. Chemical characterization of some Swedish cereals whole meal and bran fractions. Swedish J. Agric. Res. 14: 11-117.Skřivan M., Skřivanová V., Marounek M. 2005. Effects of dietary zinc, iron, and copper in layer feed on distribution of these elements in eggs, liver, excreta, soil, and herbage. Poultry Sci. 84: 1570-1575. https://doi.org/10.1093/ps/84.10.1570Spears, J.W. 1996. Optimizing mineral levels and sources for farm animals. In Kornegay E.T. (ed). Nutrient Management of Food Animals to Enhance and Protect the Environment, CRC Press, Inc., Boca Raton, FL, 259-275.Sunder G.S., Kumar V.C., Panda A.K., Raju M.V.L.N., Rao S.V.R. 2013. Effect of supplemental organic Zn and Mn on broiler performance, bone measures, tissue mineral uptake and immune response at 35 d of age. Curr. Res. Poult. Sci., 3: 1-11. https://doi.org/10.3923/crpsaj.2013.1.11Suttle N.F. 2010. Mineral nutrition of livestock, 4th Edition. CABI Publishing, Wallingford, Oxfordshire, UK. https://doi.org/10.1079/9781845934729.0000Swiatkiewicz S., Arczewska-Wlosek A., Jozefiak D. 2014. The efficacy of organic minerals in poultry nutrition: review and implications of recent studies. World Poultry Sci. J., 70:475-485. https://doi.org/10.1017/S0043933914000531Van Soest P.J., Robertson J.B., Lewis B.A. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Diary Sci., 74: 3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2Wiseman J., Villamide M.J., De Blas C., Carabaño M.J., Carabaño R.M. 1992. Prediction of the digestible energy and digestibility of gross energy of feed for rabbits. 1. Individual classes of feeds. Anim. Feed Sci. Technol., 39: 27-38. https://doi.org/10.1016/0377-8401(92)90029-6Yan J.Y., Zhang G.W., Zhang C., Tang L., Kuang S.Y. 2017. Effect of dietary organic zinc sources on growth performance, incidence of diarrhoea, serum and tissue zinc concentrations, and intestinal morphology in growing rabbits. World Rabbit Sci., 25: 43-49. https://doi.org/10.4995/wrs.2017.577

    Does Herbal and/or Zinc Dietary Supplementation Improve the Antioxidant and Mineral Status of Lambs with Parasite Infection?

    No full text
    This study was conducted to evaluate the effect of feed supplementation with a medicinal herbs mixture (Hmix) and organic zinc (Zn), alone or in combination, on the antioxidant responses and mineral status of lambs infected with the gastrointestinal nematode parasite Haemonchus contortus. A total of 24 experimentally infected lambs were randomly allocated to 1 of 4 dietary treatments (n = 6). The diets included an unsupplemented control diet (CON) and the CON further supplemented with Hmix, Zn, or both Hmix + Zn. Antioxidant enzymes activities, lipid peroxidation, total antioxidant capacity (TAC) and microelement (Zn, Cu, Fe, Mn) concentrations were analyzed in serum, liver, kidney, and intestinal mucosa. Zinc treatment elevated the superoxide dismutase activities in the duodenal mucosa and ileal TAC. Intake of Hmix resulted in higher kidney and ileal catalase activity and also influenced the TAC of the liver and intestinal mucosa. The inclusion of Hmix or Zn alone into the diet increased glutathione peroxidase activity in the blood, liver and duodenal mucosa. Tissue mineral uptake was not affected by herbal supplementation. Organic Zn intake increased the serum and liver Zn levels and influenced the Cu concentration in duodenal mucosa. Dietary supplementation with Hmix and/or Zn might promote the antioxidant status of lambs infected with Haemonchus spp

    Trace Mineral Solubility and Digestibility in the Small Intestine of Piglets Are Affected by Zinc and Fibre Sources

    No full text
    Findings that Zn and fibre source affected the nutrient apparent total tract digestibility (ATTD), made us hypothesize that interactions could occur affecting the apparent digestibility of Zn and trace elements (TEs) interacting with Zn in the digestive tract. Therefore, the study investigated the effects of Zn and fibre sources on the apparent digestibility and solubility of TEs (Zn, Cu, Fe, Mn) and pH in the small intestinal segments of 40-days-old piglets. In vitro solubility of TEs was estimated using a simulated digestion assay. Feed supplementation with potato fibre (PF) affected the ATTD of all TEs and dry matter as well as mineral solubility in the ileum and/or jejunum without any effect on pH in the small intestine. Intake of PF enhanced Zn and Cu absorption (p p p < 0.01) and affected the solubility of other TEs in the different digestion phases. Although in vitro solubility of TEs does not provide a good prediction of mineral bioaccessibility, using a combination of in vitro and in vivo methods can enable prediction of the trace mineral absorption

    Trace Mineral Solubility and Digestibility in the Small Intestine of Piglets Are Affected by Zinc and Fibre Sources

    No full text
    Findings that Zn and fibre source affected the nutrient apparent total tract digestibility (ATTD), made us hypothesize that interactions could occur affecting the apparent digestibility of Zn and trace elements (TEs) interacting with Zn in the digestive tract. Therefore, the study investigated the effects of Zn and fibre sources on the apparent digestibility and solubility of TEs (Zn, Cu, Fe, Mn) and pH in the small intestinal segments of 40-days-old piglets. In vitro solubility of TEs was estimated using a simulated digestion assay. Feed supplementation with potato fibre (PF) affected the ATTD of all TEs and dry matter as well as mineral solubility in the ileum and/or jejunum without any effect on pH in the small intestine. Intake of PF enhanced Zn and Cu absorption (p &lt; 0.01), but significantly decreased ATTD of Fe and Mn (p &lt; 0.001). Diet supplementation with Zn glycinate decreased Zn absorption in the gut (p &lt; 0.01) and affected the solubility of other TEs in the different digestion phases. Although in vitro solubility of TEs does not provide a good prediction of mineral bioaccessibility, using a combination of in vitro and in vivo methods can enable prediction of the trace mineral absorption

    Effects of Dietary Zinc and/or an Herbal Mixture on Intestinal Microbiota and Barrier Integrity in Lambs

    No full text
    The purpose of this experiment was to determine the impact of feed supplementation with organic zinc and/or a medicinal plants mixture on the composition and enzymatic activity of intestinal microflora as well as on the duodenal and jejunal barrier integrity in lambs. A total of 28 lambs were randomly allocated into 4 dietary treatments (n = 7) and were fed an unsupplemented basal diet (BD), or the BD enriched with organic Zn (Zn, 70 mg/kg diet), an herbal mixture (Herbmix, 100 g/day) or a combination of both additives (Zn+Herbmix). The Herbmix contained 33% each of Fumaria officinalis, Malva sylvestris, Matricaria chamomilla and 1% Artemisia absinthium. No significant effect on the fecal microbiota composition was observed due to the 35-day or 70-day dietary treatment. The intake of Zn alone resulted in decreased bacterial enzyme activities, such as β-glucuronidase, N-acetyl-glucosaminidase, β-galactosidase and β-glucosidase. The transepithelial electrical resistance of the small intestinal mucosa was not influenced by the dietary treatment, whereas simultaneous feeding of Zn and Herbmix exhibited higher claudin-1 and occludin levels in the jejunal mucosa. These results indicate that dietary intake of organic zinc and/or medicinal plants in the mentioned dosage did not alter the diversity of intestinal bacteria in growing lambs but did significantly influence bacterial enzyme activity. Supplementing the zinc and herbs combination showed the potential to regulate intestinal permeability by increasing the level of tight junction proteins in the jejunal mucosa
    corecore