3 research outputs found

    DNA hypomethylation upregulates expression of the MGAT3 gene in HepG2 cells and leads to changes in N-glycosylation of secreted glycoproteins

    No full text
    Changes in N-glycosylation of plasma proteins are observed in many types of cancer, nevertheless, few studies suggest the exact mechanism involved in aberrant protein glycosylation. Here we studied the impact of DNA methylation on the N-glycome in the secretome of the HepG2 cell line derived from hepatocellular carcinoma (HCC). Since the majority of plasma glycoproteins originate from the liver, the HepG2 cells represent a good model for glycosylation changes in HCC that are detectable in blood, which is an easily accessible analytic material in a clinical setting. Two different concentrations of 5-aza-2'- deoxycytidine (5-aza-2dC) differentially affected global genome methylation and induced different glycan changes. Around twenty percent of 84 glyco-genes analysed changed expression level after the 5-aza-2dC treatment as a result of global genome hypomethylation. A correlation study between the changes in glyco-gene expression and the HepG2 glycosylation profile suggests that the MGAT3 gene might be responsible for the glycan changes consistently induced by both doses of 5-aza-2dC. Core-fucosylated tetra-antennary structures were decreased in quantity likely as a result of hypomethylated MGAT3 gene promoter followed by increased expression of this gene.Proteomic

    Promoter methylation of the MGAT3 and BACH2 genes correlates with the composition of the immunoglobulin G glycome in inflammatory bowel disease

    No full text
    Background: Many genome- and epigenome-wide association studies (GWAS and EWAS) and studies of promoter methylation of candidate genes for inflammatory bowel disease (IBD) have demonstrated significant associations between genetic and epigenetic changes and IBD. Independent GWA studies have identified genetic variants in the BACH2, IL6ST, LAMB1, IKZF1, and MGAT3 loci to be associated with both IBD and immunoglobulin G (IgG) glycosylation. Methods: Using bisulfite pyrosequencing, we analyzed CpG methylation in promoter regions of these five genes from peripheral blood of several hundred IBD patients and healthy controls (HCs) from two independent cohorts, respectively. Results: We found significant differences in the methylation levels in the MGAT3 and BACH2 genes between both Crohn's disease and ulcerative colitis when compared to HC. The same pattern of methylation changes was identified for both genes in CD19 + B cells isolated from the whole blood of a subset of the IBD patients. A correlation analysis was performed between the MGAT3 and BACH2 promoter methylation and individual IgG glycans, measured in the same individuals of the two large cohorts. MGAT3 promoter methylation correlated significantly with galactosylation, sialylation, and bisecting GlcNAc on IgG of the same patients, suggesting that activity of the GnT-III enzyme, encoded by this gene, might be altered in IBD. The correlations between the BACH2 promoter methylation and IgG glycans were less obvious, since BACH2 is not a glycosyltransferase and therefore may affect IgG glycosylation only indirectly. Conclusions: Our results suggest that epigenetic deregulation of key glycosylation genes might lead to an increase in pro-inflammatory properties of IgG in IBD through a decrease in galactosylation and sialylation and an increase of bisecting GlcNAc on digalactosylated glycan structures. Finally, we showed that CpG methylation in the promoter of the MGAT3 gene is altered in CD3 + T cells isolated from inflamed mucosa of patients with ulcerative colitis from a third smaller cohort, for which biopsies were available, suggesting a functional role of this glyco-gene in IBD pathogenesis.The authors would like to thank Stephanie Scott for her organizational and administrational contribution. The study has been funded by the EU FP7 grant European Commission IBD-BIOM (contract # 305479), EU FP7 Regional Potential Grant INTEGRA-Life (contract # 315997), European Structural and Investment Funds grant for the Croatian National Centre of Research Excellence in Personalized Healthcare (contract # KK.01.1.1.01.0010), and Croatian Science Foundation grant EpiGlycoIgG (contract # 3361). Financial support from Portugal (PI: SSP): FEDER—Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020—Operacional Programme for Competitiveness and Internationalisation (POCI), Portugal 2020, and by Portuguese funds through FCT—Fundação para a Ciência e a Tecnologia/ Ministério da Ciência, Tecnologia e Inovação in the framework of the project (POCI-01/0145-FEDER-016601; PTDC/DTP-PIC/0560/2014) was received. SSP also acknowledges the European Crohn’s and Colitis Organization (ECCO) and the “Broad Medical Research program at Crohn’s and Colitis Foundation of America-CCFA” for funding. SSP acknowledges the Portuguese Group of Study on IBD (GEDII) for funding. A.M.D. [PD/BD/105982/2014] also acknowledges FCT for funding. IBD-BIOM consortium: Daniel Kolarich (Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany), Manfred Wuhrer (Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands; Division of BioAnalytical Chemistry, VU University Amsterdam, Amsterdam, the Netherlands), Dermot P. B. McGovern (F. Widjaja Family Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles), Iain K. Pemberton (IP Research Consulting SAS, Paris, France), Daniel IR Spencer (Ludger Ltd., Culham Science Centre, Oxford, UK, Daryl L. Fernandes (Ludger Ltd., Culham Science Centre, Oxford, UK), Rahul Kalla, Kate O’Leary, Alex T Adams, Hazel Drummond, Elaine Nimmo, Ray Boyapati, David C Wilson (Centre for Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK), Ray Doran (Ludger Ltd., Culham Science Centre, Oxford, UK), Igor Rudan (all, Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK), Paolo Lionetti (Paediatric Gastroenterology Unit, AOU Meyer, Viale Pieraccini, Florence, Italy), Natalia Manetti (Department of Medical and Surgical Sciences, Division of Gastroenterology, University Hospital Careggi, Florence, Italy), Fabrizio Bossa (Department of Medical Sciences, Division of Gastroenterology, IRCCS-CSS Hospital, Viale Cappuccini, Rotondo, Italy), Paola Cantoro, Anna Kohn (Division of Gastroenterology, S. Camillo Hospital, Rome, Italy), Giancarlo Sturniolo (Gastrointestinal Unit, University of Padua, Padua, Italy), Silvio Danese (IBD Unit, Humanitas Research Institute, Rozzano, Milan, Italy), Mariek Pierik (Maastricht University Medical Centre (MUMC), Maastricht, the Netherlands), and David C. Wilson (Centre for Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK). This independent research was generously supported by the following grants: EU FP7 research grant IBD-BIOM (contract # 305479) to JS, VA, GL, and VZ; EU FP7 Regional Potential Grant INTEGRA-Life (contract # 315997) to GL and VZ; European Structural and Investment Funds grant for the Croatian National Centre of Research Excellence in Personalized Healthcare (contract # KK.01.1.1.01.0010) to GL and VZ; Croatian Science Foundation grant EpiGlycoIgG (contract # 3361) to VZ; FEDER COMPETE 2020 POCI, Portugal 2020, and Portuguese funds through FCT (contracts # POCI-01/0145-FEDER-016601 and PTDC/DTP-PIC/0560/2014) to SP; and FTC (contract # PD/BD/105982/2014) to AMD
    corecore