25 research outputs found

    Deep MR to CT Synthesis for PET/MR Attenuation Correction

    Get PDF
    Positron Emission Tomography - Magnetic Resonance (PET/MR) imaging combines the functional information from PET with the flexibility of MR imaging. It is essential, however, to correct for photon attenuation when reconstructing PETs, which is challenging for PET/MR as neither modality directly image tissue attenuation properties. Classical MR-based computed tomography (CT) synthesis methods, such as multi-atlas propagation, have been the method of choice for PET attenuation correction (AC), however, these methods are slow and suffer from the poor ability to handle anatomical abnormalities. To overcome this limitation, this thesis explores the rising field of artificial intelligence in order to develop novel methods for PET/MR AC. Deep learning-based synthesis methods such as the standard U-Net architecture are not very stable, accurate, and robust to small variations in image appearance. Thus, the first proposed MR to CT synthesis method deploys a boosting strategy, where multiple weak predictors build a strong predictor providing a significant improvement in CT and PET reconstruction accuracy. Standard deep learning-based methods as well as more advanced methods like the first proposed method show issues in the presence of very complex imaging environments and large images such as whole-body images. The second proposed method learns the image context between whole-body MRs and CTs through multiple resolutions while simultaneously modelling uncertainty. Lastly, as the purpose of synthesizing a CT is to better reconstruct PET data, the use of CT-based loss functions is questioned within this thesis. Such losses fail to recognize the main objective of MR-based AC, which is to generate a synthetic CT that, when used for PET AC, makes the reconstructed PET as close as possible to the gold standard PET. The third proposed method introduces a novel PET-based loss that minimizes CT residuals with respect to the PET reconstruction

    PET/MRI attenuation estimation in the lung: A review of past, present, and potential techniques

    Get PDF
    Positron emission tomography/magnetic resonance imaging (PET/MRI) potentially offers several advantages over positron emission tomography/computed tomography (PET/CT), for example, no CT radiation dose and soft tissue images from MR acquired at the same time as the PET. However, obtaining accurate linear attenuation correction (LAC) factors for the lung remains difficult in PET/MRI. LACs depend on electron density and in the lung, these vary significantly both within an individual and from person to person. Current commercial practice is to use a single-valued population-based lung LAC, and better estimation is needed to improve quantification. Given the under-appreciation of lung attenuation estimation as an issue, the inaccuracy of PET quantification due to the use of single-valued lung LACs, the unique challenges of lung estimation, and the emerging status of PET/MRI scanners in lung disease, a review is timely. This paper highlights past and present methods, categorizing them into segmentation, atlas/mapping, and emission-based schemes. Potential strategies for future developments are also presented

    The Role of MRI Physics in Brain Segmentation CNNs: Achieving Acquisition Invariance and Instructive Uncertainties

    Get PDF
    Being able to adequately process and combine data arising from different sites is crucial in neuroimaging, but is difficult, owing to site, sequence and acquisition-parameter dependent biases. It is important therefore to design algorithms that are not only robust to images of differing contrasts, but also be able to generalise well to unseen ones, with a quantifiable measure of uncertainty. In this paper we demonstrate the efficacy of a physics-informed, uncertainty-aware, segmentation network that employs augmentation-time MR simulations and homogeneous batch feature stratification to achieve acquisition invariance. We show that the proposed approach also accurately extrapolates to out-of-distribution sequence samples, providing well calibrated volumetric bounds on these. We demonstrate a significant improvement in terms of coefficients of variation, backed by uncertainty based volumetric validation

    A Multi-Channel Uncertainty-Aware Multi-Resolution Network for MR to CT Synthesis

    Get PDF
    Synthesising computed tomography (CT) images from magnetic resonance images (MRI) plays an important role in the field of medical image analysis, both for quantification and diagnostic purposes. Convolutional neural networks (CNNs) have achieved state-of-the-art results in image-to-image translation for brain applications. However, synthesising whole-body images remains largely uncharted territory, involving many challenges, including large image size and limited field of view, complex spatial context, and anatomical differences between images acquired at different times. We propose the use of an uncertainty-aware multi-channel multi-resolution 3D cascade network specifically aiming for whole-body MR to CT synthesis. The Mean Absolute Error on the synthetic CT generated with the MultiResunc network (73.90 HU) is compared to multiple baseline CNNs like 3D U-Net (92.89 HU), HighRes3DNet (89.05 HU) and deep boosted regression (77.58 HU) and shows superior synthesis performance. We ultimately exploit the extrapolation properties of the MultiRes networks on sub-regions of the body

    Uncertainty-aware multi-resolution whole-body MR to CT synthesis

    Get PDF
    Synthesising computed tomography (CT) images from magnetic resonance images (MRI) plays an important role in the field of medical image analysis, both for quantification and diagnostic purposes. Especially for brain applications, convolutional neural networks (CNNs) have proven to be a valuable tool in this image translation task, achieving state-of-the-art results. Full body image synthesis, however, remains largely uncharted territory, bearing many challenges including a limited field of view and large image size, complex spatial context and anatomical differences between time-elapsing image acquisitions. We propose a novel multi-resolution cascade 3D network for end-to-end full-body MR to CT synthesis. We show that our method outperforms popular CNNs like U-Net in 2D and 3D. We further propose to include uncertainty in our network as a measure of safety and to account for intrinsic noise and misalignment in the data

    Early detection of COVID-19 in the UK using self-reported symptoms: a large-scale, prospective, epidemiological surveillance study

    Get PDF
    Background Self-reported symptoms during the COVID-19 pandemic have been used to train artificial intelligence models to identify possible infection foci. To date, these models have only considered the culmination or peak of symptoms, which is not suitable for the early detection of infection. We aimed to estimate the probability of an individual being infected with SARS-CoV-2 on the basis of early self-reported symptoms to enable timely self-isolation and urgent testing. Methods In this large-scale, prospective, epidemiological surveillance study, we used prospective, observational, longitudinal, self-reported data from participants in the UK on 19 symptoms over 3 days after symptoms onset and COVID-19 PCR test results extracted from the COVID-19 Symptom Study mobile phone app. We divided the study population into a training set (those who reported symptoms between April 29, 2020, and Oct 15, 2020) and a test set (those who reported symptoms between Oct 16, 2020, and Nov 30, 2020), and used three models to analyse the selfreported symptoms: the UK’s National Health Service (NHS) algorithm, logistic regression, and the hierarchical Gaussian process model we designed to account for several important variables (eg, specific COVID-19 symptoms, comorbidities, and clinical information). Model performance to predict COVID-19 positivity was compared in terms of sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) in the test set. For the hierarchical Gaussian process model, we also evaluated the relevance of symptoms in the early detection of COVID-19 in population subgroups stratified according to occupation, sex, age, and body-mass index. Findings The training set comprised 182 991 participants and the test set comprised 15 049 participants. When trained on 3 days of self-reported symptoms, the hierarchical Gaussian process model had a higher prediction AUC (0·80 [95% CI 0·80–0·81]) than did the logistic regression model (0·74 [0·74–0·75]) and the NHS algorithm (0·67 [0·67–0·67]). AUCs for all models increased with the number of days of self-reported symptoms, but were still high for the hierarchical Gaussian process model at day 1 (0·73 [95% CI 0·73–0·74]) and day 2 (0·79 [0·78–0·79]). At day 3, the hierarchical Gaussian process model also had a significantly higher sensitivity, but a non-statistically lower specificity, than did the two other models. The hierarchical Gaussian process model also identified different sets of relevant features to detect COVID-19 between younger and older subgroups, and between health-care workers and non-health-care workers. When used during different pandemic periods, the model was robust to changes in populations. Interpretation Early detection of SARS-CoV-2 infection is feasible with our model. Such early detection is crucial to contain the spread of COVID-19 and efficiently allocate medical resources. Funding ZOE, the UK Government Department of Health and Social Care, the Wellcome Trust, the UK Engineering and Physical Sciences Research Council, the UK National Institute for Health Research, the UK Medical Research Council, the British Heart Foundation, the Alzheimer’s Society, the Chronic Disease Research Foundation, and the Massachusetts Consortium on Pathogen Readiness

    Disentangling post-vaccination symptoms from early COVID-19

    Get PDF
    Background: Identifying and testing individuals likely to have SARS-CoV-2 is critical for infection control, including post-vaccination. Vaccination is a major public health strategy to reduce SARS-CoV-2 infection globally. Some individuals experience systemic symptoms post-vaccination, which overlap with COVID-19 symptoms. This study compared early post-vaccination symptoms in individuals who subsequently tested positive or negative for SARS-CoV-2, using data from the COVID Symptom Study (CSS) app. Methods: We conducted a prospective observational study in 1,072,313 UK CSS participants who were asymptomatic when vaccinated with Pfizer-BioNTech mRNA vaccine (BNT162b2) or Oxford-AstraZeneca adenovirus-vectored vaccine (ChAdOx1 nCoV-19) between 8 December 2020 and 17 May 2021, who subsequently reported symptoms within seven days (N=362,770) (other than local symptoms at injection site) and were tested for SARS-CoV-2 (N=14,842), aiming to differentiate vaccination side-effects per se from superimposed SARS-CoV-2 infection. The post-vaccination symptoms and SARS-CoV-2 test results were contemporaneously logged by participants. Demographic and clinical information (including comorbidities) were recorded. Symptom profiles in individuals testing positive were compared with a 1:1 matched population testing negative, including using machine learning and multiple models considering UK testing criteria. Findings: Differentiating post-vaccination side-effects alone from early COVID-19 was challenging, with a sensitivity in identification of individuals testing positive of 0.6 at best. Most of these individuals did not have fever, persistent cough, or anosmia/dysosmia, requisite symptoms for accessing UK testing; and many only had systemic symptoms commonly seen post-vaccination in individuals negative for SARS-CoV-2 (headache, myalgia, and fatigue). Interpretation: Post-vaccination symptoms per se cannot be differentiated from COVID-19 with clinical robustness, either using symptom profiles or machine-derived models. Individuals presenting with systemic symptoms post-vaccination should be tested for SARS-CoV-2 or quarantining, to prevent community spread. Funding: UK Government Department of Health and Social Care, Wellcome Trust, UK Engineering and Physical Sciences Research Council, UK National Institute for Health Research, UK Medical Research Council and British Heart Foundation, Chronic Disease Research Foundation, Zoe Limited

    Anxiety and depression symptoms after COVID-19 infection: results from the COVID Symptom Study app

    Get PDF
    Background: Mental health issues have been reported after SARS-CoV-2 infection. However, comparison to prevalence in uninfected individuals and contribution from common risk factors (eg, obesity and comorbidities) have not been examined. We identified how COVID-19 relates to mental health in the large community-based COVID Symptom Study. // Methods: We assessed anxiety and depression symptoms using two validated questionnaires in 413148 individuals between February and April 2021; 26998 had tested positive for SARS-CoV-2. We adjusted for physical and mental prepandemic comorbidities, body mass index (BMI), age and sex. // Findings: Overall, 26.4% of participants met screening criteria for general anxiety and depression. Anxiety and depression were slightly more prevalent in previously SARS-CoV-2-positive (30.4%) vs SARS-CoV-2-negative (26.1%) individuals. This association was small compared with the effect of an unhealthy BMI and the presence of other comorbidities, and not evident in younger participants (≤40 years). Findings were robust to multiple sensitivity analyses. Association between SARS-CoV-2 infection and anxiety and depression was stronger in individuals with recent (120 days) infection, suggesting a short-term effect. // Interpretation: A small association was identified between SARS-CoV-2 infection and anxiety and depression symptoms. The proportion meeting criteria for self-reported anxiety and depression disorders is only slightly higher than prepandemic

    Anosmia, ageusia, and other COVID-19-like symptoms in association with a positive SARS-CoV-2 test, across six national digital surveillance platforms: an observational study.

    Get PDF
    Background: Multiple voluntary surveillance platforms were developed across the world in response to the COVID-19 pandemic, providing a real-time understanding of population-based COVID-19 epidemiology. During this time, testing criteria broadened and health-care policies matured. We aimed to test whether there were consistent associations of symptoms with SARS-CoV-2 test status across three surveillance platforms in three countries (two platforms per country), during periods of testing and policy changes. Methods: For this observational study, we used data of observations from three volunteer COVID-19 digital surveillance platforms (Carnegie Mellon University and University of Maryland Facebook COVID-19 Symptom Survey, ZOE COVID Symptom Study app, and the Corona Israel study) targeting communities in three countries (Israel, the UK, and the USA; two platforms per country). The study population included adult respondents (age 18–100 years at baseline) who were not health-care workers. We did logistic regression of self-reported symptoms on self-reported SARS-CoV-2 test status (positive or negative), adjusted for age and sex, in each of the study cohorts. We compared odds ratios (ORs) across platforms and countries, and we did meta-analyses assuming a random effects model. We also evaluated testing policy changes, COVID-19 incidence, and time scales of duration of symptoms and symptom-to-test time. Findings: Between April 1 and July 31, 2020, 514 459 tests from over 10 million respondents were recorded in the six surveillance platform datasets. Anosmia–ageusia was the strongest, most consistent symptom associated with a positive COVID-19 test (robust aggregated rank one, meta-analysed random effects OR 16·96, 95% CI 13·13–21·92). Fever (rank two, 6·45, 4·25–9·81), shortness of breath (rank three, 4·69, 3·14–7·01), and cough (rank four, 4·29, 3·13–5·88) were also highly associated with test positivity. The association of symptoms with test status varied by duration of illness, timing of the test, and broader test criteria, as well as over time, by country, and by platform. Interpretation: The strong association of anosmia–ageusia with self-reported positive SARS-CoV-2 test was consistently observed, supporting its validity as a reliable COVID-19 signal, regardless of the participatory surveillance platform, country, phase of illness, or testing policy. These findings show that associations between COVID-19 symptoms and test positivity ranked similarly in a wide range of scenarios. Anosmia, fever, and respiratory symptoms consistently had the strongest effect estimates and were the most appropriate empirical signals for symptom-based public health surveillance in areas with insufficient testing or benchmarking capacity. Collaborative syndromic surveillance could enhance real-time epidemiological investigations and public health utility globally. Funding: National Institutes of Health, National Institute for Health Research, Alzheimer's Society, Wellcome Trust, and Massachusetts Consortium on Pathogen Readiness

    Modest effects of dietary supplements during the COVID-19 pandemic: Insights from 445 850 users of the COVID-19 Symptom Study app

    Get PDF
    OBJECTIVE: Dietary supplements may ameliorate SARS-CoV-2 infection, although scientific evidence to support such a role is lacking. We investigated whether users of the COVID-19 Symptom Study app who regularly took dietary supplements were less likely to test positive for SARS-CoV-2 infection. DESIGN: App-based community survey. SETTING: 445 850 subscribers of an app that was launched to enable self-reported information related to SARS-CoV-2 infection for use in the general population in the UK (n=372 720), the USA (n=45 757) and Sweden (n=27 373). MAIN EXPOSURE: Self-reported regular dietary supplement usage (constant use during previous 3 months) in the first waves of the pandemic up to 31 July 2020. MAIN OUTCOMES MEASURES: SARS-CoV-2 infection confirmed by viral RNA reverse transcriptase PCR test or serology test before 31 July 2020. RESULTS: In 372 720 UK participants (175 652 supplement users and 197 068 non-users), those taking probiotics, omega-3 fatty acids, multivitamins or vitamin D had a lower risk of SARS-CoV-2 infection by 14% (95% CI (8% to 19%)), 12% (95% CI (8% to 16%)), 13% (95% CI (10% to 16%)) and 9% (95% CI (6% to 12%)), respectively, after adjusting for potential confounders. No effect was observed for those taking vitamin C, zinc or garlic supplements. On stratification by sex, age and body mass index (BMI), the protective associations in individuals taking probiotics, omega-3 fatty acids, multivitamins and vitamin D were observed in females across all ages and BMI groups, but were not seen in men. The same overall pattern of association was observed in both the US and Swedish cohorts. CONCLUSION: In women, we observed a modest but significant association between use of probiotics, omega-3 fatty acid, multivitamin or vitamin D supplements and lower risk of testing positive for SARS-CoV-2. We found no clear benefits for men nor any effect of vitamin C, garlic or zinc. Randomised controlled trials are required to confirm these observational findings before any therapeutic recommendations can be made
    corecore