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Abstract. Synthesising computed tomography (CT) images from mag-
netic resonance images (MRI) plays an important role in the field of
medical image analysis, both for quantification and diagnostic purposes.
Especially for brain applications, convolutional neural networks (CNNs)
have proven to be a valuable tool in this image translation task, achiev-
ing state-of-the-art results. Full body image synthesis, however, remains
largely uncharted territory, bearing many challenges including a limited
field of view and large image size, complex spatial context and anatom-
ical differences between time-elapsing image acquisitions. We propose a
novel multi-resolution cascade 3D network for end-to-end full-body MR
to CT synthesis. We show that our method outperforms popular CNNs
like U-Net in 2D and 3D. We further propose to include uncertainty in
our network as a measure of safety and to account for intrinsic noise and
misalignment in the data.

Keywords: MR to CT synthesis · Multi-resolution CNN · Uncertainty.

1 Introduction

Simultaneous positron emission tomography and magnetic resonance imaging
(PET/MRI) is an important tool in both clinical and research applications that
allows for a multiparametric evaluation of an individual. It combines the high
soft-tissue contrast from MRI with radiotracer uptake distribution information
obtained from PET imaging. To accurately reconstruct PET images, it is es-
sential to correct for photon attenuation throughout the patient. A multi-center
study on brain images has shown that obtaining tissue attenuation coefficients
from synthesised computed tomography (CT) images leads to state-of-the-art re-
sults for PET/MRI attenuation correction [12]. In recent years, the field of MR
to CT synthesis has shifted towards the use of convolutional neural networks
(CNNs) that have proved to be a powerful tool in the MR to CT image trans-
lation task, outperforming existing multi-atlas-based methods [11, 17]. However,
the problem full-body MR to CT synthesis has largely remained untackled. In
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2019, Ge et al. [5] attempted to translate full-body MR images to CT images by
introducing a multi-view adversarial learning scheme that predicts 2D pseudo-
CT (pCT) images along three axes (i.e. axial, coronal, sagittal). 3D volumes are
obtained for each axis by stacking 2D slices together before an average fusion
is performed to obtain one final 3D volume. The synthesis performance is then
evaluated on sub-regions of the body (lungs, femur bones, spine etc). They do
not, however, provide results on the full volume. We propose a novel learning
scheme for uncertainty aware multi-resolution MR to CT synthesis of the full
body (MultiRes). Multi-resolution learning has been used for many computer
vision tasks such as dynamic scene deblurring [15], optical flow prediction [3]
and depth map estimation [4]. In the field of medical imaging, multi-resolution
learning is a popular method for image classification [9] and segmentation [8].
These methods learn strong features at multiple levels of scale and abstraction,
therefore finding the input/output voxel correspondence based on these features.
Due to the large image size of full-body acquisitions and physical GPU memory
constraints, high-resolution 3D image synthesis networks can only be trained in
a patch-wise manner, thus capturing a limited amount of spatial context. We
show that incorporating feature maps learned at multiple resolutions results in
significantly better pCT images than using high-resolution images alone. As a
means of providing a measure of algorithm safety, and to account for the limited
number of training samples, we also model uncertainty [16]. It is important to dis-
tinguish between two types of uncertainty: aleatoric and epistemic uncertainty.
Aleatoric uncertainty captures the irreducible variance that exists in the data,
whereas epistemic uncertainty accounts for the uncertainty in the model [10].
Aleatoric uncertainty can be further subcategorized into homoscedastic and het-
eroscedastic. Homoscedastic uncertainty is constant across all input data, while
heteroscedastic uncertainty varies across the input data. It is evident that in our
setting the aleatoric uncertainty should be modelled as heteroscedastic, as task
performance is expected to vary spatially due to the presence of artefacts, tissue
boundaries, small structures etc. By training our network with channel dropout
we can stochastically sample from the approximate posterior over the network
weights to obtain epistemic uncertainty measures. By explicitly modelling for
the intrinsic noise in the data via modifications to our network architecture and
loss function we can observe the heteroscedastic uncertainty. The network is en-
couraged to assign high levels of uncertainty to high error regions, providing a
means of understanding what aspects of the data pose the greatest challenges.

2 Methods

The main challenge with whole body data is its size, and the fact that a large
field of view is necessary to make accurate predictions. Common networks, such
as a U-Net [2], can only store patches of size 1603 due to GPU memory limita-
tions. This small field of view causes significant issues as it will be demonstrated
later in the experiments section. To tackle this issue we propose an end-to-end
multi-scale convolutional neural network that takes input patches from full-body
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Fig. 1. Proposed MultiRes network architecture. An initial T1 MR patch of size 3203

is fed into each instance of the HighRes3DNet architecture [13] at various levels of
resolution and field of view. Lower level feature maps are concatenated to those at the
next level until the full resolution level, where these concatenated feature maps are
passed through two branches consisting of a series of 1 × 1 × N convolutional layers:
one resulting in a synthesised CT patch and the other to the corresponding voxel-wise
heteroscedastic uncertainty.

MR images at three resolution levels to synthesise high resolution, realistic CT
patches. The network also incorporates explicit heteroscedastic uncertainty mod-
elling by casting our task likelihood probabilistically, and epistemic uncertainty
estimation via traditional Monte Carlo dropout. We employ a patch-based train-
ing approach whereby at each resolution level of the framework a combination
of downsampling and cropping operations results in patches of similar size but
at different resolutions, spanning varied fields of view. Three independent in-
stances of HighRes3DNet are trained simultaneously, thus not sharing weights,
taking patches of each resolution as input each resulting in a feature map with
different resolution. Lower level feature maps are concatenated to those at the
next level of resolution until the full resolution level, where these concatenated
feature maps are passed through two branches of 1 × 1 × N convolutional lay-
ers resulting in a synthesised CT patch and the the corresponding voxel-wise
heteroscedastic uncertainty. This is illustrated in Fig. 1. We posit, similarly to
[8], that such a design allows the network to simultaneously benefit from the
fine details afforded by the highest resolution patch and the increased spatial
context provided by the higher field of view patches. However, we incorporate
an additional level of deep supervision that [8] misses.

2.1 Modelling heteroscedastic uncertainty

Previous works on MR to CT synthesis have shown that residual errors are not
homogeneously spread throughout the image, rather, they are largely concen-
trated around organ/tissue boundaries. As such, a heteroscedastic uncertainty
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model is most suitable for this task, where data-dependent, or intrinsic, uncer-
tainty is assumed to be variable. We begin by modelling our task likelihood as
a normal distribution with mean fW (x), the model output corresponding to
the input x, parameterised by weights W, and voxel-wise standard deviation
σW (x), the data intrinsic noise:

p(y|fW (x)) = N (fW (x),σW (x)) (1)

Our loss function is derived by calculating the negative log of the likelihood:

L(y,x;W) = −log p(y|fW (x))

≈ 1

2σW (x)2

(
y − fW (x

)2

+ logσW (x)

=
1

2σW (x)
L2(y,f

W (x)) + logσW (x)

(2)

In those regions where the observed L2 error remains high, the uncertainty
should compensate and also increase. The second term in the loss prevents the
collapse to the trivial solution of assigning a large uncertainty everywhere.

2.2 Modelling epistemic uncertainty

Test-time dropout has been established as the go-to method for estimating model
uncertainty, a Bayesian approximation at inference. By employing dropout dur-
ing training and testing we can sample from a distribution of sub-nets that in the
regime of data scarcity will provide varying predictions. This variability captures
the uncertainty present in the network’s parameters, allowing for a voxel-wise
estimation by quantifying the variance across these samples. In this work, chan-
nel dropout was chosen over the traditional neuron dropout. Channel dropout
has indeed been shown to be better for convolutional layers where channels fully
encode image features while neurons do not encode individually such meaningful
information [7]. Dropout samples at inference time are acquired by performing N
stochastic forward passes over the network, equivalent to sampling from the pos-
terior over the weights. A measure of uncertainty can be obtained by calculating
the variance over these samples on a voxel-wise basis.

2.3 Implementation details

Experiments were implemented and carried out using NiftyNet, a TensorFlow
based deep learning framework tailored for medical imaging [6], and code will be
made available on publication. The multi-scale network consists of three residual
networks, each taking in an 80×80×80 MR image patch with different resolutions
and fields of view. In order of high, medium, and low resolution, the MR patches
are obtained by taking an initial high resolution 320 × 320 × 320 patch and
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cropping the central 80× 80× 80 region (high), downsampling the initial patch
by a factor of two and taking the central 80 × 80 × 80 patch (medium), and
finally downsampling the initial patch by a factor of four to obtain a 80×80×80
patch (low).

Starting from the lowest resolution sub-net, the output of size 80×80×80 is
upsampled by a factor of two and centrally cropped. This patch is concatenated
with the output of the medium resolution sub-net. This concatenated patch of
size 80×80×80×2 is then upsampled by a factor of two and centrally cropped,
before being concatenated to the output of the high-resolution sub-net. These
series of upsamplings and crops ensure that the final outputs contain patches
with the same field of view prior to the final set of four 3D convolutions of kernel
size 1× 1× 1, which produces the CT patch.

Heteroscedastic variance is modelled by the addition of a series of four 1×1×1
convolutional layers following the concatenation of the combined low-medium
scale output to the high scale output, architecturally identical to the convolu-
tional layers for the synthesis branch. Channel dropout probability (i.e.: The
probability to keep any one channel in a kernel) was set to 0.5, both during
training and testing, and N=20 forward passes were carried out for each ex-
periment. The batch size was set to one, ADAM was used as the optimiser and
networks were trained until convergence, where this was defined as a sub 5% loss
change over a period of 5000 iterations.

3 Experiments and Results

3.1 Data

The dataset used for training and cross-validation consisted of 32 pairs of whole-
body MR (voxel size 0.67 × 0.67 × 5 mm3) and CT images (voxel size 1.37 ×
1.37 × 3.27 mm3). Whole-body MR images were acquired in four stages. MR
pre-processing included bias field correction followed by fusion between stages
using a percentile-based intensity harmonisation. All images were resampled to
CT resolution. MR and CT images were aligned using first a rigid registration
algorithm followed by a very-low-degree-of-freedom non-rigid deformation. A
second non-linear registration was performed, using a cubic B-spline with nor-
malised mutual information to correct for soft tissue shift [1][14]. Both CT and
MR images were rescaled to be between 0 and 1 for increased training stability.

3.2 Experiments

In addition to our proposed method, we compare results quantitatively and
qualitatively against two baselines: U-Net trained with 2D, 224×224×1, patches
with batch size one, and U-Net trained with 3D, 160× 160× 160, patches with
batch size one. An additional four convolutional layers with kernel size three were
added prior to the final 1×1×1 convolutional layer in the standard architecture
as this was found to increase stability during training. All models were trained
on the same 22 images while the remaining 10 images were equally split into
validation and testing data.
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Table 1.MAE and MSE across all experiments including number of trainable variables.
Bolded entries denote best model (p-value < 0.05).

Experiments Model parameters MAE (HU) MSE (HU2)

2D U-Net (No Unc) 4.84M 112.94 ± 16.04 32081.18 ± 5667.11
3D U-Net (No Unc) 14.49M 99.87 ± 14.17 23217.57 ± 3515.50
MultiRes 2.54M 62.42 ± 6.8 11347.16 ± 3089.12
MultiResunc 2.61M 80.14 ± 15.81 14113.83 ± 3668.79

3.3 Results

Quantitative evaluation The quantitative evaluation consists of a Mean

Squared Error (MSE =
∑

(pCT−CT )2

V , with V being the total number of non-

zero voxels) and Mean Absolute Error (MAE =
∑ |pCT−CT |

V ) analysis between
the network outputs and the ground truth CT. We observe that the proposed
method without uncertainty performs the best, exhibiting the lowest MAE and
MSE averaged across all inference subjects. A paired t-test was performed to
show that the results are significantly better (p-value < 0.05). Furthermore, the
proposed MultiRes networks show a better performance while decreasing the
model size making the networks much more efficient than the U-Net models.

Qualitative evaluation Fig. 2 shows the ground truth CT and the pCT pre-
dictions generated with 2D U-Net, 3D U-Net, proposed MultiRes and proposed
MultiResunc with uncertainty and the subject’s MR image as well as the models’
corresponding residuals. 2D U-Net clearly cannot capture bone; likely because it
lacks the spatial context necessary to construct small (relatively) cohesive struc-
tures such as vertebrae. The lungs, having a significantly larger cross-sectional
area, are visible, but lack internal consistency. 3D U-Net’s bone synthesis is more
faithful than its 2D counterpart but is characterised by a large degree of blur-
riness most evident in the femurs. The proposed MultiRes model exhibits the
greatest bone fidelity; the individual vertebrae are more clear, with intensities
more in line with what would be expected for such tissues, and the femurs boast
more well-defined borders. The proposed MultiResunc model leads to similar re-
sults than the simpler proposed MultiRes model without uncertainty. However,
bones are slightly blurrier, likely due to the inclusion of uncertainty term and
limited network capacity, but still demonstrates superior bone reconstruction
than both U-Net models.

The benefits afforded to MultiResunc for being uncertainty-aware are show-
cased in Fig. 3. The joint histograms (a) and (b) are constructed by calculating
the error rate, taken as the difference between the ground truth CT and pCT
averaged across N=20 dropout samples, at different levels of both epistemic
and heteroscedastic uncertainty (standard deviations per voxel) and taking the
base 10 log. The red line describes the average error rate at each level of uncer-
tainty. We observe a significant correlation between uncertainty and error rate,
suggesting that the model appropriately assigns a higher uncertainty to those
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Fig. 2. Top: CT and pCT prediction of 2D U-Net, 3D U-Net, proposed MultiRes and
proposed uncertainty aware MultiResunc. Bottom row: MR image and model residuals.

regions that are difficult to predict. This correlation is likewise observed when
comparing the maps of uncertainty (epistemic: (c), heteroscedastic: (e)) with the
corresponding absolute error map (d). Both epistemic and heteroscedastic uncer-
tainties exhibit large values around structure borders, as expected. The borders
between tissues are not sharp and there is, therefore, some ambiguity in these
regions, which is mirrored by the corresponding overlapping error in the residu-
als. An increased amount of data should diminish the epistemic uncertainty by
providing the network with a greater number of samples from which to learn
the correspondence between MR and CT in these areas. The aforementioned
blurriness, however, could result in some inconsistency in the synthesis process,
which would be captured by the heteroscedastic uncertainty.

Of note is the high degree of uncertainty we observed in the vicinity of air
pockets. Unlike corporeal structures, it is expected that these pockets are subject
to deformation between the MR and CT scanning sessions, resulting in a lack
of correspondence between the acquisitions in these regions. This results in the
network attempting to synthesise a morphologically different pocket to what is
observed in the MR, resulting in a high degree of uncertainty.
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a) b) c) d) e)

Fig. 3. Joint histogram of prediction uncertainty and error rate for proposed
MultiResunc network: a) Epistemic b) Heteroscedastic. The average error rate at dif-
ferent uncertainty levels is shown by the red line. Error rate tends to increase with
increasing uncertainty, showing that the network correlates uncertainty to regions of
error. c) Epistemic uncertainty and e) heteroscedastic uncertainty correlate with d) the
MAE of the prediction error [0HU, 800HU], solidifying this point.

4 Discussion and Conclusions

Our contributions in this work are two-fold: MultiRes, a novel learning scheme
for uncertainty aware multi-resolution MR to CT synthesis of the full body, and
MultiResunc, a version of this model that incorporates uncertainty as a safety
measure and to account for intrinsic data noise. We demonstrate the signifi-
cantly superior performance (p-value < 0.05) of MultiRes and MultiResunc by
comparing it to single-resolution CNNs, 2D and 3D U-Net, and the importance
of modelling uncertainty, showing that MultiResunc is able to identify regions
where the MR to CT translation is most difficult.

In a data-scarce environment, it becomes especially important to quantify
uncertainty as networks are unlikely to have have sufficient evidence for full
convergence.

After all, accurately aligning CT and MR images is inevitable to validate the
voxel-wise performance of any image synthesis algorithm until other appropriate
methods have been developed that allow validating on non-registered data.

Despite the slightly decreased performance of MultiResunc compared to
MultiRes, both from a quantitative and qualitative standpoint, we posit that
the additional insight introduced by modelling uncertainty can compensate for
this. Furthermore, while the model does not reconstruct bone-based structures
as well as its uncertainty agnostic counterpart, it still outperforms both U-Net
models qualitatively and quantitatively.

To summarise, we design a multi-scale/resolution network for MR to CT
synthesis, showing that it outperforms single-resolution 2D and 3D alternatives.
Furthermore, by incorporating epistemic uncertainty via test time dropout, and
heteroscedastic uncertainty by casting the model probabilistically, we can show-
case those regions that exhibit the greatest variability, providing a measure of
safety from an algorithmic standpoint. We demonstrate that these regions corre-
late well with the residuals obtained by comparing the outputs with the ground

8 SASHIMI2020, 017, v6 (final): ’Uncertainty-aware Multi-resolution Whole-body MR to . . .



Uncertainty-aware multi-resolution whole-body MR to CT synthesis 9

truth, lending further credence to the usefulness of uncertainty’s inclusion. We
argue that the slight decrease in performance of the uncertainty aware model is
insignificant compared to the important additional information provided by the
uncertainty.
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