41 research outputs found
A change in the transportation needs today, a better future for tomorrow – climate change review
No sooner than later, the world will be living hell as a result of the transportation effects on our climate now escalating. The pressure is now growing towards their resultant effects to be totally eradicated in order to save our planet otherwise, the stabilisation of these effects; global warming, greenhouse gas (GHG) emission and degradation will need to be sought after. The world all over is at it now in an effort to restore our climate, to save it from the effects of these catastrophes/disasters.
On the proposition of the Kyoto Protocol in1997, the main focus was to decrease greenhouse emissions of mainly six gases – Carbon dioxide, methane, nitrous oxide, sulphur hexafluoride, Hydro fluorocarbons (HFCs) and Per fluorinated Compounds (PFCs). And transport alone, accounts for over 26% of global CO2 and has been regarded as one of the few industrial sectors wherein emissions are still on the increase, on this basis, researchers and policy makers are all at it to tackle the menace of climate changes through provision of sustainable transport.
This paper focuses on the new and developed technologies like the renewable energy source [RES], which will be an alternative to transport fuels to avoid the dependence on petroleum which after effects are damaging to the world climate, and may probably not be there forever to continue serving the world ever increasing population. While the long term solutions are being sought, these alternatives will make do for now
Simulation vs. Reality: A Comparison of In Silico Distance Predictions with DEER and FRET Measurements
Site specific incorporation of molecular probes such as fluorescent- and nitroxide spin-labels into biomolecules, and subsequent analysis by Förster resonance energy transfer (FRET) and double electron-electron resonance (DEER) can elucidate the distance and distance-changes between the probes. However, the probes have an intrinsic conformational flexibility due to the linker by which they are conjugated to the biomolecule. This property minimizes the influence of the label side chain on the structure of the target molecule, but complicates the direct correlation of the experimental inter-label distances with the macromolecular structure or changes thereof. Simulation methods that account for the conformational flexibility and orientation of the probe(s) can be helpful in overcoming this problem. We performed distance measurements using FRET and DEER and explored different simulation techniques to predict inter-label distances using the Rpo4/7 stalk module of the M. jannaschii RNA polymerase. This is a suitable model system because it is rigid and a high-resolution X-ray structure is available. The conformations of the fluorescent labels and nitroxide spin labels on Rpo4/7 were modeled using in vacuo molecular dynamics simulations (MD) and a stochastic Monte Carlo sampling approach. For the nitroxide probes we also performed MD simulations with explicit water and carried out a rotamer library analysis. Our results show that the Monte Carlo simulations are in better agreement with experiments than the MD simulations and the rotamer library approach results in plausible distance predictions. Because the latter is the least computationally demanding of the methods we have explored, and is readily available to many researchers, it prevails as the method of choice for the interpretation of DEER distance distributions
Natural History of Tuberculosis: Duration and Fatality of Untreated Pulmonary Tuberculosis in HIV Negative Patients: A Systematic Review
Background The prognosis, specifically the case fatality and duration, of untreated tuberculosis is important as many patients are not correctly diagnosed and therefore receive inadequate or no treatment. Furthermore, duration and case fatality of tuberculosis are key parameters in interpreting epidemiological data. Methodology and Principal Findings To estimate the duration and case fatality of untreated pulmonary tuberculosis in HIV negative patients we reviewed studies from the pre-chemotherapy era. Untreated smear-positive tuberculosis among HIV negative individuals has a 10-year case fatality variously reported between 53% and 86%, with a weighted mean of 70%. Ten-year case fatality of culture-positive smear-negative tuberculosis was nowhere reported directly but can be indirectly estimated to be approximately 20%. The duration of tuberculosis from onset to cure or death is approximately 3 years and appears to be similar for smear-positive and smear-negative tuberculosis. Conclusions Current models of untreated tuberculosis that assume a total duration of 2 years until self-cure or death underestimate the duration of disease by about one year, but their case fatality estimates of 70% for smear-positive and 20% for culture-positive smear-negative tuberculosis appear to be satisfactory
Single-molecule transistor fabrication by self-aligned lithography and in situ molecular assembly
We describe the fabrication of single-molecule transistors by self-aligned lithography and in situ molecular assembly. Ultrathin metallic electrodes are patterned with a nanoscale interelectrode separation defined by the lateral oxidation of a thin layer of Al. Highly conjugated molecular units are sequentially assembled within the electrode gap by selective design of the molecular end group chemistry. The assembled devices display evidence of molecular conduction. © 2006 Elsevier B.V. All rights reserved.link_to_subscribed_fulltex
Encoding molecular-wire formation within nanoscale sockets
(Figure Presented) Wire straits: Three-component molecular wires were constructed in situ by first assembling a monolayer of a bifunctional arene on the electrode surfaces, such that only one end of the molecule (thiol) reacts with the electrode. Then, a second molecule was used to chemically bridge the gap between the termini of the films. Coordination chemistry in this context provides a versatile method to reversibly form molecular-scale wires (see picture). EDTA = ethylenediaminetetraacetate. © 2007 Wiley-VCH Verlag GmbH & Co. KGaA.link_to_subscribed_fulltex
Predicting Text Readability with Personal Pronouns
Part 5: Perceptual IntelligenceInternational audienceWhile the classic Readability Formula exploits word and sentence length, we aim to test whether Personal Pronouns (PPs) can be used to predict text readability with similar accuracy or not. Out of this motivation, we first calculated readability score of randomly selected texts of nine genres from the British National Corpus (BNC). Then we used Multiple Linear Regression (MLR) to determine the degree to which readability could be explained by any of the 38 individual or combinational subsets of various PPs in their orthographical forms (including I, me, we, us, you, he, him, she, her (the Objective Case), it, they and them). Results show that (1) subsets of plural PPs can be more predicative than those of singular ones; (2) subsets of Objective forms can make better predictions than those of Subjective ones; (3) both the subsets of first- and third-person PPs show stronger predictive power than those of second-person PPs; (4) adding the article the to the subsets could only improve the prediction slightly. Reevaluation with resampled texts from BNC verify the practicality of using PPs as an alternative approach to predict text readability
Covalently bridging gaps in single-walled carbon nanotubes with conducting molecules
Molecular electronics is often limited by the poorly defined nature of the contact between the molecules and the metal surface. We describe a method to wire molecules into gaps in single-waited carbon nanotubes (SWNTs). Precise oxidative cutting of a SWNT produces carboxylic acid-terminated electrodes separated by gaps of <= 10 nanometers. These point contacts react with molecules derivatized with amines to form molecular bridges held in place by amide linkages. These chemical contacts are robust and allow a wide variety of molecules to be tested electrically. In addition to testing molecular wires, we show how to install functionality in the molecular backbone that allows the conductance of the single-molecule bridges to switch with pH
