14 research outputs found

    RNA-RNA Interactions Enable Specific Targeting of Noncoding RNAs to Nascent Pre-mRNAs and Chromatin Sites

    Get PDF
    Intermolecular RNA-RNA interactions are used by many noncoding RNAs (ncRNAs) to achieve their diverse functions. To identify these contacts, we developed a method based on RNA antisense purification to systematically map RNA-RNA interactions (RAP-RNA) and applied it to investigate two ncRNAs implicated in RNA processing: U1 small nuclear RNA, a component of the spliceosome, and Malat1, a large ncRNA that localizes to nuclear speckles. U1 and Malat1 interact with nascent transcripts through distinct targeting mechanisms. Using differential crosslinking, we confirmed that U1 directly hybridizes to 5′ splice sites and 5′ splice site motifs throughout introns and found that Malat1 interacts with pre-mRNAs indirectly through protein intermediates. Interactions with nascent pre-mRNAs cause U1 and Malat1 to localize proximally to chromatin at active genes, demonstrating that ncRNAs can use RNA-RNA interactions to target specific pre-mRNAs and genomic sites. RAP-RNA is sensitive to lower abundance RNAs as well, making it generally applicable for investigating ncRNAs

    The NORAD lncRNA assembles a topoisomerase complex critical for genome stability

    Get PDF
    The human genome contains thousands of long non-coding RNAs, but specific biological functions and biochemical mechanisms have been discovered for only about a dozen. A specific long non-coding RNA—non-coding RNA activated by DNA damage (NORAD)—has recently been shown to be required for maintaining genomic stability, but its molecular mechanism is unknown. Here we combine RNA antisense purification and quantitative mass spectrometry to identify proteins that directly interact with NORAD in living cells. We show that NORAD interacts with proteins involved in DNA replication and repair in steady-state cells and localizes to the nucleus upon stimulation with replication stress or DNA damage. In particular, NORAD interacts with RBMX, a component of the DNA-damage response, and contains the strongest RBMX-binding site in the transcriptome. We demonstrate that NORAD controls the ability of RBMX to assemble a ribonucleoprotein complex—which we term NORAD-activated ribonucleoprotein complex 1 (NARC1)—that contains the known suppressors of genomic instability topoisomerase I (TOP1), ALYREF and the PRPF19–CDC5L complex. Cells depleted for NORAD or RBMX display an increased frequency of chromosome segregation defects, reduced replication-fork velocity and altered cell-cycle progression—which represent phenotypes that are mechanistically linked to TOP1 and PRPF19–CDC5L function. Expression of NORAD in trans can rescue defects caused by NORAD depletion, but rescue is significantly impaired when the RBMX-binding site in NORAD is deleted. Our results demonstrate that the interaction between NORAD and RBMX is important for NORAD function, and that NORAD is required for the assembly of the previously unknown topoisomerase complex NARC1, which contributes to maintaining genomic stability. In addition, we uncover a previously unknown function for long non-coding RNAs in modulating the ability of an RNA-binding protein to assemble a higher-order ribonucleoprotein complex

    The NORAD lncRNA assembles a topoisomerase complex critical for genome stability

    Get PDF
    The human genome contains thousands of long non-coding RNAs, but specific biological functions and biochemical mechanisms have been discovered for only about a dozen. A specific long non-coding RNA—non-coding RNA activated by DNA damage (NORAD)—has recently been shown to be required for maintaining genomic stability, but its molecular mechanism is unknown. Here we combine RNA antisense purification and quantitative mass spectrometry to identify proteins that directly interact with NORAD in living cells. We show that NORAD interacts with proteins involved in DNA replication and repair in steady-state cells and localizes to the nucleus upon stimulation with replication stress or DNA damage. In particular, NORAD interacts with RBMX, a component of the DNA-damage response, and contains the strongest RBMX-binding site in the transcriptome. We demonstrate that NORAD controls the ability of RBMX to assemble a ribonucleoprotein complex—which we term NORAD-activated ribonucleoprotein complex 1 (NARC1)—that contains the known suppressors of genomic instability topoisomerase I (TOP1), ALYREF and the PRPF19–CDC5L complex. Cells depleted for NORAD or RBMX display an increased frequency of chromosome segregation defects, reduced replication-fork velocity and altered cell-cycle progression—which represent phenotypes that are mechanistically linked to TOP1 and PRPF19–CDC5L function. Expression of NORAD in trans can rescue defects caused by NORAD depletion, but rescue is significantly impaired when the RBMX-binding site in NORAD is deleted. Our results demonstrate that the interaction between NORAD and RBMX is important for NORAD function, and that NORAD is required for the assembly of the previously unknown topoisomerase complex NARC1, which contributes to maintaining genomic stability. In addition, we uncover a previously unknown function for long non-coding RNAs in modulating the ability of an RNA-binding protein to assemble a higher-order ribonucleoprotein complex

    Elicitation of Neutralizing Antibodies Directed against CD4-Induced Epitope(s) Using a CD4 Mimetic Cross-Linked to a HIV-1 Envelope Glycoprotein

    Get PDF
    The identification of HIV-1 envelope glycoprotein (Env) structures that can generate broadly neutralizing antibodies (BNAbs) is pivotal to the development of a successful vaccine against HIV-1 aimed at eliciting effective humoral immune responses. To that end, the production of novel Env structure(s) that might induce BNAbs by presentation of conserved epitopes, which are otherwise occluded, is critical. Here, we focus on a structure that stabilizes Env in a conformation representative of its primary (CD4) receptor-bound state, thereby exposing highly conserved “CD4 induced” (CD4i) epitope(s) known to be important for co-receptor binding and subsequent virus infection. A CD4-mimetic miniprotein, miniCD4 (M64U1-SH), was produced and covalently complexed to recombinant, trimeric gp140 envelope glycoprotein (gp140) using site-specific disulfide linkages. The resulting gp140-miniCD4 (gp140-S-S-M64U1) complex was recognized by CD4i antibodies and the HIV-1 co-receptor, CCR5. The gp140-miniCD4 complex elicited the highest titers of CD4i binding antibodies as well as enhanced neutralizing antibodies against Tier 1 viruses as compared to gp140 protein alone following immunization of rabbits. Neutralization against HIV-27312/V434M and additional serum mapping confirm the specific elicitation of antibodies directed to the CD4i epitope(s). These results demonstrate the utility of structure-based approach in improving immunogenic response against specific region, such as the CD4i epitope(s) here, and its potential role in vaccine application

    The Xist lncRNA Exploits Three-Dimensional Genome Architecture to Spread Across the X Chromosome

    Get PDF
    Many large noncoding RNAs (lncRNAs) regulate chromatin, but the mechanisms by which they localize to genomic targets remain unexplored. We investigated the localization mechanisms of the Xist lncRNA during X-chromosome inactivation (XCI), a paradigm of lncRNA-mediated chromatin regulation. During the maintenance of XCI, Xist binds broadly across the X chromosome. During initiation of XCI, Xist initially transfers to distal regions across the X chromosome that are not defined by specific sequences. Instead, Xist identifies these regions by exploiting the three-dimensional conformation of the X chromosome. Xist requires its silencing domain to spread across actively transcribed regions and thereby access the entire chromosome. These findings suggest a model in which Xist coats the X chromosome by searching in three dimensions, modifying chromosome structure, and spreading to newly accessible locations.Hertz FoundationAmerican Society for Engineering Education. National Defense Science and Engineering Graduate FellowshipBroad Institute of MIT and Harvar

    The NORAD lncRNA assembles a topoisomerase complex critical for genome stability

    No full text
    The human genome contains thousands of long non-coding RNAs1, but specific biological functions and biochemical mechanisms have been discovered for only about a dozen2–7. A specific long non-coding RNA—non-coding RNA activated by DNA damage (NORAD)—has recently been shown to be required for maintaining genomic stability8, but its molecular mechanism is unknown. Here we combine RNA antisense purification and quantitative mass spectrometry to identify proteins that directly interact with NORAD in living cells. We show that NORAD interacts with proteins involved in DNA replication and repair in steady-state cells and localizes to the nucleus upon stimulation with replication stress or DNA damage. In particular, NORAD interacts with RBMX, a component of the DNA-damage response, and contains the strongest RBMX-binding site in the transcriptome. We demonstrate that NORAD controls the ability of RBMX to assemble a ribonucleoprotein complex—which we term NORAD-activated ribonucleoprotein complex 1 (NARC1)—that contains the known suppressors of genomic instability topoisomerase I (TOP1), ALYREF and the PRPF19–CDC5L complex. Cells depleted for NORAD or RBMX display an increased frequency of chromosome segregation defects, reduced replication-fork velocity and altered cell-cycle progression—which represent phenotypes that are mechanistically linked to TOP1 and PRPF19–CDC5L function. Expression of NORAD in trans can rescue defects caused by NORAD depletion, but rescue is significantly impaired when the RBMX-binding site in NORAD is deleted. Our results demonstrate that the interaction between NORAD and RBMX is important for NORAD function, and that NORAD is required for the assembly of the previously unknown topoisomerase complex NARC1, which contributes to maintaining genomic stability. In addition, we uncover a previously unknown function for long non-coding RNAs in modulating the ability of an RNA-binding protein to assemble a higher-order ribonucleoprotein complex

    Rabbit study design and antibody binding analysis of vaccine sera.

    No full text
    <p>(A) Scheme of vaccination study in rabbits, showing time-point of administration of immunogens and collection of sera for evaluation. (B & C) SF162 gp140-specific binding antibody responses induced by various immunogens [gp140, M64U1 (miniCD4), gp140-S-S-M64U1 (cross-linked), or gp140+M64U1 (mixed)] in rabbit sera. Two weeks following the second (2wp2), third (2wp3) and fourth (2wp4) immunizations, individual sera were analyzed via ELISA and group geometric mean (geomean) titers calculated. Pre-immune sera were also evaluated to identify the level of non-specific reactivity. (B) Avidity of SF162 gp140-specific antibodies from the four groups of animals at 2wp2, 2wp3 and 2wp4 following immunization.</p

    Binding of cross-linked gp140-miniCD4 (gp140-S-S-M64U1) complex to CCR5 peptide.

    No full text
    <p>Surface Plasmon Resonance (SPR) binding analysis of (A) gp140 and (B) cross-linked gp140-miniCD4 (gp140-S-S-M64U1) complex to two ligands immobilized on CM5 sensor chip: biotinylated, tyrosine-sulfated (at positions 10 and 14) 22-mer N-terminal CCR5 peptide [biotin-CCR5(SO3)] <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0030233#pone.0030233-Dey1" target="_blank">[30]</a>, <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0030233#pone.0030233-Farzan1" target="_blank">[31]</a> and a control, biotinylated non-sulfated 22-mer N-terminal CCR5 peptide [biotin-CCR5 (control)].</p

    Neutralization of HIV-2 in the presence and absence of sCD4.

    No full text
    <p>Individual rabbit sera from the four groups (immunized with either gp140, miniCD4 M64U1, cross-linked gp140-S-S-M64U1 complex or mixed gp140+M64U1 complex) were tested for neutralizing activity against the isolate 7312A/V434A in the absence (open bars) or presence (filled bars) of sCD4. The ID50 neutralization titers are shown for the pre-immune (black), 2wp3 (red), and 2wp4 (blue) serum samples. The antigens used for immunization are indicated above each graph. Dashed lines indicate the lowest dilution tested.</p
    corecore