1,030 research outputs found
Threshold Laws for the Break-up of Atomic Particles into Several Charged Fragments
The processes with three or more charged particles in the final state exhibit
particular threshold behavior, as inferred by the famous Wannier law for (2e +
ion) system. We formulate a general solution which determines the threshold
behavior of the cross section for multiple fragmentation. Applications to
several systems of particular importance with three, four and five leptons
(electrons and positrons) in the field of charged core; and two pairs of
identical particles with opposite charges are presented. New threshold
exponents for these systems are predicted, while some previously suggested
threshold laws are revised.Comment: 40 pages, Revtex, scheduled for the July issue of Phys.Rev.A (1998
Negative index metamaterial combining magnetic resonators with metal films
We present simulation results of a design for negative index materials that
uses magnetic resonators to provide negative permeability and metal film for
negative permittivity. We also discuss the possibility of using semicontinuous
metal films to achieve better manufacturability and enhanced impedance
matching.Comment: 6 pages, 3 figure
FATP4 missense and nonsense mutations cause similar features in Ichthyosis Prematurity Syndrome
<p>Abstract</p> <p>Background</p> <p>Ichthyosis Prematurity Syndrome (IPS) is an autosomal recessive disorder characterized by premature birth, non-scaly ichthyosis and atopic manifestations. The disease was recently shown to be caused by mutations in the gene encoding the fatty acid transport protein 4 (FATP4) and a specific reduction in the incorporation of very long chain fatty acids (VLCFA) into cellular lipids.</p> <p>Findings</p> <p>We screened probands from five families segregating IPS for mutations in the <it>FATP4 </it>gene. Four probands were compound heterozygous for four different mutations of which three are novel. Four patients were heterozygous and one patient homozygous for the previously reported non-sense mutation p.C168X (c.504c > a). All patients had clinical characteristics of IPS and a similar clinical course.</p> <p>Conclusions</p> <p>Missense mutations and non-sense mutations in <it>FATP4 </it>are associated with similar clinical features suggesting that missense mutations have a severe impact on FATP4 function. The results broaden the mutational spectrum in <it>FATP4 </it>associated with IPS for molecular diagnosis of and further functional analysis of FATP4.</p
Comparison of Zn_{1-x}Mn_xTe/ZnTe multiple-quantum wells and quantum dots by below-bandgap photomodulated reflectivity
Large-area high density patterns of quantum dots with a diameter of 200 nm
have been prepared from a series of four Zn_{0.93}Mn_{0.07}Te/ZnTe multiple
quantum well structures of different well width (4 nm, 6 nm, 8 nm and 10 nm) by
electron beam lithography followed by Ar+ ion beam etching. Below-bandgap
photomodulated reflectivity spectra of the quantum dot samples and the parent
heterostructures were then recorded at 10 K and the spectra were fitted to
extract the linewidths and the energy positions of the excitonic transitions in
each sample. The fitted results are compared to calculations of the transition
energies in which the different strain states in the samples are taken into
account. We show that the main effect of the nanofabrication process is a
change in the strain state of the quantum dot samples compared to the parent
heterostructures. The quantum dot pillars turn out to be freestanding, whereas
the heterostructures are in a good approximation strained to the ZnTe lattice
constant. The lateral size of the dots is such that extra confinement effects
are not expected or observed.Comment: 23 pages, LaTeX2e (amsmath, epsfig), 7 EPS figure
Numerical Investigation of a Mesoscopic Vehicular Traffic Flow Model Based on a Stochastic Acceleration Process
In this paper a spatial homogeneous vehicular traffic flow model based on a
stochastic master equation of Boltzmann type in the acceleration variable is
solved numerically for a special driver interaction model. The solution is done
by a modified direct simulation Monte Carlo method (DSMC) well known in non
equilibrium gas kinetic. The velocity and acceleration distribution functions
in stochastic equilibrium, mean velocity, traffic density, ACN, velocity
scattering and correlations between some of these variables and their car
density dependences are discussed.Comment: 23 pages, 10 figure
Molecular mode of action and role of TP53 in the sensitivity to the novel epothilone sagopilone (ZK-EPO) in A549 non-small cell lung cancer cells
Sagopilone, an optimized fully synthetic epothilone, is a microtubule-stabilizing compound that has shown high in vitro and in vivo activity against a broad range of human tumor models. We analyzed the differential mechanism of action of sagopilone in non-small cell lung cancer cell lines in vitro. Sagopilone inhibited proliferation of non-small cell lung cancer cell lines at lower nanomolar concentration. The treatment with sagopilone caused strong disturbances of cellular cytoskeletal organization. Two concentration-dependent phenotypes were observed. At 2.5 nM sagopilone or 4 nM paclitaxel an aneuploid phenotype occur whereas a mitotic arrest phenotype was induced by 40 nM sagopilone or paclitaxel. Interestingly, treatment with 2.5 nM of sagopilone effectively inhibited cell proliferation, but - compared to high concentrations (40 nM) - only marginally induced apoptosis. Treatment with a high versus a low concentration of sagopilone or paclitaxel regulates a non-overlapping set of genes, indicating that both phenotypes substantially differ from each other. Genes involved in G2/M phase transition and the spindle assembly checkpoint, like Cyclin B1 and BUBR1 were upregulated by treatment with 40 nM sagopilone. Unexpectedly, also genes involved in DNA damage response were upregulated under that treatment. In contrast, treatment of A549 cells with a low concentration of sagopilone revealed an upregulation of direct transcriptional target genes of TP53, like CDKN1A, MDM2, GADD45A, FAS. Knockdown of TP53, which inhibited the transcriptional induction of TP53 target genes, led to a significant increase in apoptosis induction in A549 cells when treated with a low concentration of sagopilone. The results indicate that activation of TP53 and its downstream effectors like CDKN1A by low concentrations of sagopilone is responsible for the relative apoptosis resistance of A549 cells and might represent a mechanism of resistance to sagopilone
Post-Collision Interaction with Wannier electrons
A theory of the Post-Collision Interaction (PCI) is developed for the case
when an electron atom impact results in creation of two low-energy Wannier
electrons and an ion excited into an autoionizing state. The following
autoionization decay exposes the Wannier pair to the influence of PCI resulting
in variation of the shape of the line in the autoionization spectrum. An
explicit dependence of the autoionization profile on the wave function of the
Wannier pair is found. PCI provides an opportunity to study this wave function
for a wide area of distancesComment: 33 pages, Latex, IOP style, and 3 figures fig1.ps, fig2.ps, fig3.p
A Vehicular Traffic Flow Model Based on a Stochastic Acceleration Process
A new vehicular traffic flow model based on a stochastic jump process in
vehicle acceleration and braking is introduced. It is based on a master
equation for the single car probability density in space, velocity and
acceleration with an additional vehicular chaos assumption and is derived via a
Markovian ansatz for car pairs. This equation is analyzed using simple driver
interaction models in the spatial homogeneous case. Velocity distributions in
stochastic equilibrium, together with the car density dependence of their
moments, i.e. mean velocity and scattering and the fundamental diagram are
presented.Comment: 27 pages, 6 figure
Cascaded Optical Field Enhancement in Composite Plasmonic Nanostructures
Copyright Ā© 2010 The American Physical SocietyWe present composite plasmonic nanostructures designed to achieve cascaded enhancement of electromagnetic fields at optical frequencies. Our structures were made with the help of electron-beam lithography and comprise a set of metallic nanodisks placed one above another. The optical properties of reproducible arrays of these structures were studied by using scanning confocal Raman spectroscopy. We show that our composite nanostructures robustly demonstrate dramatic enhancement of the Raman signals when compared to those measured from constituent elements
- ā¦