898 research outputs found

    Engineering physics of superconducting hot-electron bolometer mixers

    Full text link
    Superconducting hot-electron bolometers are presently the best performing mixing devices for the frequency range beyond 1.2 THz, where good quality superconductor-insulator-superconductor (SIS) devices do not exist. Their physical appearance is very simple: an antenna consisting of a normal metal, sometimes a normal metal-superconductor bilayer, connected to a thin film of a narrow, short superconductor with a high resistivity in the normal state. The device is brought into an optimal operating regime by applying a dc current and a certain amount of local- oscillator power. Despite this technological simplicity its operation has been found to be controlled by many different aspects of superconductivity, all occurring simultaneously. A core ingredient is the understanding that there are two sources of resistance in a superconductor: a charge conversion resistance occurring at an normal-metal-superconductor interface and a resistance due to time- dependent changes of the superconducting phase. The latter is responsible for the actual mixing process in a non-uniform superconducting environment set up by the bias-conditions and the geometry. The present understanding indicates that further improvement needs to be found in the use of other materials with a faster energy-relaxation rate. Meanwhile several empirical parameters have become physically meaningful indicators of the devices, which will facilitate the technological developments.Comment: This is an author-processed copy of an Invited contribution to the Special Issue of the IEEE Transactions on Terahertz Science and Technology dedicated to the 28th IEEE International Symposium on Space Terahertz Technology (ISSTT2017

    Anaerobic membrane bioreactors: Are membranes really necessary?

    Get PDF
    Membranes themselves represent a significant cost for the full scale application of anaerobic membrane bioreactors (AnMBR). The possibility of operating an AnMBR with a self-forming dynamic membrane generated by the substances present in the reactor liquor would translate into an important saving. A self-forming dynamic membrane only requires a support material over which a cake layer is formed, which determines the rejection properties of the system. The present research studies the application of self-forming dynamic membranes in AnMBRs. An AnMBR was operated under thermophilic and mesophilic conditions, using woven and non woven materials as support for the dynamic membranes. Results showed that the formation of a cake layer over the support materials enables the retention of more than 99% of the solids present in the reactor. However, only low levels of flux were achieved, up to 3 L/m2 x h, and reactor operation was unstable, with sudden increases in filtration resistance, due to excessive cake layer formation. Further fine-tuning of the proposed technology involves looking for conditions that can control effectively cake layer formatio

    Population dynamics of free-swimming Annelida in four Dutch wastewater treatment plants in relation to process characteristics

    Get PDF
    Free-swimming Annelida occasionally occur in very high densities in WWTPs (WasteWater Treatment Plants) and are nowadays applied for waste sludge reduction, but their growth is uncontrollable. In order to get more insight in the population dynamics of these free-swimming Annelida, and relate their presence to process characteristics, nine ATs (Aeration Tanks) of four Dutch WWTPs were regularly sampled over a 2.5-year period. For each species, peak periods in worm population growth were defined and population doubling times and half-lives calculated. Peak periods and doubling times were compared to those in natural systems. Process characteristics were obtained from the plant operators and related to the worm populations by multivariate analysis for the first time in large-scale WWTPs. The species composition in the WWTPs was limited and the most abundant free-swimming Annelida were in decreasing order Nais spp., Aeolosoma hemprichi, Pristina aequiseta, Aeolosoma variegatum, Chaetogaster diastrophus, and Aeolosoma tenebrarum.This latter species had never been found before in WWTPs. Worm absence sometimes coincided with the presence of anoxic zones, but this was possibly overcome by higher temperatures in the WWTPs. Worms were present all year round, even in winter, but no yearly recurrences of population peaks were observed, probably as a result of stable food supply and temperature, and the lack of predation in the WWTPs. Peak periods were similar between the ATs of each WWTP. The duration of the peak periods was on average 2Âż3 months for each species and the population doubling times in the peak periods were short (on average 2Âż6 days), which also corresponds to a stable favorable environment. The disappearance of worm populations from the WWTPs was presumably caused by declining asexual reproduction and subsequent removal with the waste sludge. Multivariate analysis indicated that 36% of the variability in worm populations was due to spatial and temporal patterns only. In addition, no more than 4% of the variability in worm populations was related to variations in process characteristics only and worm presence was usually associated with better sludge settleability. In conclusion, our data from large-scale WWTPs suggest that growth of free-swimming Annelida still seems uncontrollable and that their effects on treatment processes are unclear, which makes stable application in wastewater treatment for sludge reduction difficult

    Influence of spin filtering and spin mixing on the subgap structure of I-V characteristics in superconducting quantum point contact

    Full text link
    The effect of spin filtering and spin mixing on the dc electric current for voltage biased magnetic quantum point contact with superconducting leads is theoretically studied. The I-V characteristics are calculated for the whole range of spin filtering and spin mixing parameters. It is found that with increasing of spin filtering the subharmonic step structure of the dc electric current, typical for low-transparency junction and junction without considerable spin filtering qualitatively changes. In the lower voltage region and for small enough spin mixing the peak structure arises. When spin mixing increases the peak subgap structure evolves to the step structure. The voltages where subharmonic gap features are located are found to be sensitive to the value of spin filtering. The positions of peaks and steps are calculated analytically and the evolution of the subgap structure from well-known tunnel limit to the large spin filtering case is explained in terms of multiple Andreev reflection (MAR) processes. In particular, it is found that for large spin filtering the subgap feature at eVkeV_k arises from 2kth2k^{\rm th} and (2k±1)th(2k\pm 1)^{\rm th} order MAR processes, while in the tunnel limit the step at eVneV_n is known to result from nthn^{\rm th} order MAR process.Comment: 9 pages, 3 figure

    Dynamics of spin transport in voltage-biased Josephson junctions

    Full text link
    We investigate spin transport in voltage-biased spin-active Josephson junctions. The interplay of spin filtering, spin mixing, and multiple Andreev reflection leads to nonlinear voltage dependence of the dc and ac spin current. We compute the voltage characteristics of the spin current (I_S) for superconductor-ferromagnet-superconductor (SFS) Josephson junctions. The sub-harmonic gap structure of I_S(V) is shown to be sensitive to the degree of spin mixing generated by the ferromagnetic interface, and exhibits a pronounced even-odd effect associated with spin transport during multiple Andreev reflection processes. For strong spin mixing both the magnitude and the direction of the dc spin current can be sensitively controlled by the bias voltage.Comment: 4 pages, 3 figure

    Superconducting transport through a vibrating molecule

    Full text link
    Nonequilibrium electronic transport through a molecular level weakly coupled to a single coherent phonon/vibration mode has been studied for superconducting leads. The Keldysh Green function formalism is used to compute the current for the entire bias voltage range. In the subgap regime, Multiple Andreev Reflection (MAR) processes accompanied by phonon emission cause rich structure near the onset of MAR channels, including an even-odd parity effect that can be interpreted in terms of an inelastic MAR ladder picture. Thereby we establish a connection between the Keldysh formalism and the Landauer scattering approach for inelastic MAR.Comment: 5 pages, 5 figures, version contains now more details, accepted by PR
    • …
    corecore