138 research outputs found
Local adsorption structure and bonding of porphine on Cu(111) before and after self-metalation
We have experimentally determined the lateral registry and geometric
structure of free-base porphine (2H-P) and copper-metalated porphine (Cu-P)
adsorbed on Cu(111), by means of energy-scanned photoelectron diffraction
(PhD), and compared the experimental results to density functional theory (DFT)
calculations that included van der Waals corrections within the
Tkatchenko-Scheffler approach. Both 2H-P and Cu-P adsorb with their center
above a surface bridge site. Consistency is obtained between the experimental
and DFT-predicted structural models, with a characteristic change in the
corrugation of the four N atoms of the molecule's macrocycle following
metalation. Interestingly, comparison with previously published data for cobalt
porphine adsorbed on the same surface evidences a distinct increase in the
average height of the N atoms above the surface through the series 2H-P, Cu-P,
cobalt porphine. Such an increase strikingly anti-correlates the DFT-predicted
adsorption strength, with 2H-P having the smallest adsorption height despite
the weakest calculated adsorption energy. In addition, our findings suggest
that for these macrocyclic compounds, substrate-to-molecule charge transfer and
adsorption strength may not be univocally correlated
Surface-Confined Metal?Organic Nanostructures from Co-Directed Assembly of Linear Terphenyl-dicarbonitrile Linkers on Ag(111)
A detailed structural analysis of the surface supported self-assembly of terphenyl-4,4′′-dicarbonitrile molecules (NC−Ph3−CN) linked by Co adatoms on Ag(111) reveals different surface patterns depending on the constraints applied to the system. Without constraints, i.e., sufficient mobility and absence of space limitations at the surface, extended regular honeycomb nanomeshes are formed. On the basis of high-resolution scanning tunneling microscopy images, an atomistic model is derived showing the crystallographic orientation of the molecules and a commensurate alignment of the honeycomb networks, which exist in two rotational domains on the Ag(111) atomic lattice. For Co deficiency, an additional star-like Co-directed motif has been identified, and fully disordered networks are present if space limitations are imposed. In these cases, nodal motifs exist showing between 3- and 6-fold coordination of Co centers
Device-Compatible Chiroptical Surfaces through Self-Assembly of Enantiopure Allenes
Chiroptical methods have been proven to be superior compared to their achiral counterparts for the structural elucidation of many compounds. To expand the use of chiroptical systems to everyday applications, the development of functional materials exhibiting intense chiroptical responses is essential. Particularly, tailored and robust interfaces compatible with standard device operation conditions are required. Herein, we present the design and synthesis of chiral allenes and their use for the functionalization of gold surfaces. The self-assembly results in a monolayer-thin room-temperature-stable upstanding chiral architecture as ascertained by ellipsometry, X-ray photoelectron spectroscopy, and near-edge X-ray absorption fine structure. Moreover, these nanostructures anchored to device-compatible substrates feature intense chiroptical second harmonic generation. Both straightforward preparation of the device-compatible interfaces along with their chiroptical nature provide major prospects for everyday applications
Bloch gain in dc-ac-driven semiconductor superlattices in the absence of electric domains
We study theoretically the feasibility of amplification and generation of
terahertz radiation in dc-ac-driven semiconductor superlattices in the absence
of electric domains. We find that if in addition to dc bias a strong THz pump
field is applied, Bloch gain profile for a small THz signal can be achieved
under conditions of positive static differential conductivity. Here the
positive differential conductivity arises, similarly to the case of
large-signal amplification scheme [H. Kroemer, cond-mat/0009311)], due to
modifications of dc current density caused by the application of high-frequency
ac field [K. Unterrainer \textit{et al.}, Phys. Rev. Lett. \textbf{76}, 2973
(1996)]. Whereas the sign of absorption at low and zero frequencies is
sensitive to the ac fields, the gain profile in the vicinity of gain maximum is
robust. We suggest to use this ac-induced effect in a starter for THz Bloch
oscillator. Our analysis demonstrates that the application of a short THz pulse
to a superlattice allows to suppress the undesirable formation of electric
domains and reach a sustained large-amplitude operation of the dc-biased Bloch
scillator.Comment: 13 pages, 12 figure
Metal-organic honeycomb nanomeshes with tunable cavity size
We present a systematic study of metal-organic honeycomb lattices assembled from simple ditopic molecular bricks and Co atoms on Ag(111). This approach enables us to fabricate size- and shape-controlled open nanomeshes with pore dimensions up to 5.7 nm. The networks are thermally robust while extending over mu m(2) large areas as single domains. They are shape resistant in the presence of further deposited materials and represent templates to organize guest species and realize molecular rotary systems
- …