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Chiroptical methods have been proven to be superior compared to their achiral counterparts for the structural 
elucidation of many compounds. In order to expand the use of chiroptical systems to everyday applications, the 
development of functional materials exhibiting intense chiroptical responses is essential. Particularly, tailored 
and robust interfaces compatible with standard device operation conditions are required. Herein, we present the 
design and synthesis of chiral allenes and their use for the functionalization of gold surfaces. The self-assembly 
results in a monolayer-thin room-temperature-stable upstanding chiral architecture as ascertained by 
ellipsometry, X-ray photoelectron spectroscopy, and near-edge X-ray absorption-fine-structure. Moreover, these 
nanostructures anchored to device-compatible substrates features intense chiroptical second harmonic 
generation. Both straight-forward preparation of the device-compatible interfaces along with their chiroptical 
nature provide major prospects for everyday applications. 

 

Introduction 

Non-superimposable systems with their mirror images are set to 
be chiral and may exist in two enantiomeric forms. The two 
opposite enantiomers of a molecule are indistinguishable when 
interacting with an achiral entity. However, as in the famous 
case of thalidomide, when interacting with another chiral entity 
they may respond in a different way. Also light can be chiral, 
like the case of circularly polarized light (CPL). While a 
racemic mixture or rac, a 1:1 mixture of two enantiomeric 
counterparts, is not distinguishable spectroscopically from and 
achiral system, the opposite response of enantiopure chiral 
systems when interacting with lights of contrary chirality gives 
rise to chiroptical spectroscopies.1,2 These spectroscopies 
present remarkable high sensitivity to conformational changes 
and supramolecular interactions. As a consequence they are 
routinely used not only for absolute configuration 
determination3–5 and conformational assignments,6,7 but also for 
the characterization of molecular assemblies where at least one 
of the components is chiral.8,9 Moreover, a guest molecule may 
be identified by the characteristic chiroptical responses when 
forming a complex with a chiral host, a task far from trivial for 
non-chiral techniques.1,10 In this regard, there are several studies 
focused on the design and synthesis of systems presenting 

enhanced chiroptical responses in the search for 
applications in solution.11–15 On the other hand, 
constructions of chiroptical surfaces is required in order to 
develop lab-on-a-chip devices. However, the limited 
knowledge regarding the interfacial integration of 
chiroptical compounds has hampered to date the emergence 
of chiroptical sensors for everyday use. In that respect, 
Lakey and coworkers observed folding in a monolayer of a 
22 kDa protein domain,16 and Wälti´s group studied the 
influence of two-dimensional organization on the 
conformational state in a peptide monolayer using circular 
dichroism (CD).17 Yada and co-workers used the same 
technique to study the influence of an electric field on 
oriented films of lipid bilayers.18 Additionally, Govorov 
and coworkers have been exploring the chiroptical 
amplification of thick (~10 nm) layers of biomolecules by 
surface plasmon resonance.19 However, the complex 
conformational dynamics and multiple chemical 
interactions possible for such large molecular systems 
represent complications with respect to the development of 
everyday chiroptical applications.  
The exploration of chiroptical responses on surfaces 
functionalized with a single monolayer of small molecules 
(< 500 Da) for an enhanced conformational control has 



remained challenging so far. While the formation of stable 
interfaces was demonstrated with chiral porphyrins20 or 
cyclodextrins,21 their chiroptical properties remain unexplored. 
In contrast to most of the chiral molecules where the chirality 
comes from chiral centers with notation (R) or (S) following the 
Cahn–Ingold–Prelog rules,22 chiral axes such as allenes7,11,15 or 
spiranes23,24 with (P) of (M) configuration have been proven to 
be useful chiral elements for the construction of systems with 
remarkable chiroptical responses in solution. With the aim of 
developing versatile chiroptical surfaces, we have previously 
investigated the self-assembly of enantiopure (M,M)-CF-1 
comprising two diethynylallenes on a single crystal surface 
(Scheme 1a). Under such ideal conditions, we demonstrated the 
formation of upstanding chiral architectures (UCAs), in which 
the single chiral molecules are arranged perpendicular to the 
underlying substrate as 2D nanostructures with possibilities for 
post-synthetic modification.25 However, the weak molecule‒
substrate interactions hindered the exploration of the chiroptical 
responses of the formed chiral surfaces at room temperature 
(RT). Herein, we present the design and synthesis of 
enantiopure (P)-CF-2 and (M)-CF-2 (Scheme 1) and their use 
for surface functionalization. The high stability of the formed 
self-assemblies enabled the construction of monolayer-thin 
device-compatible interfaces presenting strong chiroptical 
second harmonic generation (SHG). 
 
Results and discussion  

Synthesis of (±)-CF-2 started from alcohol 1, which was treated 
with mesyl chloride at 0 °C, and a subsequent treatment with 
potassium thioacetate in N,N-dimethylformamide lead to 
thioacetate pyridine 2 in 80% yield (Scheme 1b). Sonogashira 
reaction of pyridine 2 with axially chiral diethynylallene (±)-3 
catalyzed by [Pd(PPh3)4] with Et3N in tetrahydrofuran afforded 
the desired chiral compound (±)-CF-2. Enantiomeric resolution 
was carried out using the chiral stationary phase Chiralpak IA. 
Assignment of the absolute configuration was performed by 
comparison of the CD spectrum of (P)-CF-2 synthesized from 
enantiopure (P)-3 with the two fractions of the enantiomeric 
resolution. Thermal and photostability of (M)-CF-2 in solution 
as determined by CD were considered sufficient to employ 
these chiral molecules for the construction of chiroptical 
surfaces (for more details, see the Supporting Information (SI)). 

 

Scheme 1 a: Structure of (M,M)-CF-1 previously used for 
surface functionalization.25 b: Synthesis and enantiomeric 
resolution of (±)-CF-2. Reagents and conditions: i) mesyl 
chloride, Et3N, CH2Cl2, 0 °C to 25 °C, 22 h; ii) CH3COSK, 
DMF, 0 °C to 25 °C, 4 h, 80%; iii) Et3N, [Pd(PPh3)4], THF, 65 
°C, 72 h, 46%; iv) Chiralpak® IA, 96:4 n-Hex/i-PrOH, 4.0 mL 
min–1. The shown length of (M)-CF-2 was predicted at the 
AM1 level of theory. 

Monolayer preparation of enantiopure (M)-CF-2 and (P)-
CF-2, and racemate (±)-CF-2 onto template-stripped Au 
substrates (AuTS) was performed by immersion in a 
toluene solution. Ellipsometry data analysis considering a 
two-layer model showed 1.49 ± 0.12 nm thickness for the 
monolayer, which is comparable with the predicted length 
of the molecule plus the Au‒S bond (Scheme 1). This 
supports that the CF-2 molecules are mostly standing 
straight up from the substrate at RT as previously proposed 
for CF-1 at lower temperatures. 

 
Figure 1. Semilog plot of J vs. V for EGaIn/Ga2O3//(M)-CF-2 
UCA/AuTS junctions in the dark (black), after illumination in 
the light (red), and in the dark after illumination step (hollow), 
and EGaIn/Ga2O3//OPE2/AuTS junctions (grey). Error bars 
are per-junction confidence intervals calculated using α = 0.95. 
The samples were first measured in the dark using a red light 
source as dim as possible to position the tip on the substrate; 
they were then irradiated at 256 nm (60 W) for 30 minutes and 
measured again in a fully lit environment; finally, the samples 
were let rest for 1 h in the dark before being measured again 
using the initial conditions. UCA stands for upstanding chiral 
architectures. 

Conductance plots of current-density, J, versus potential, V 
are typically used to obtain information regarding the 
nature and quality of molecular layers. In tunneling 
junctions, the dependence of J on the molecular length, d, 
can be approximated by the equation J(V)=J0 • e-βd, where 
J0 is the injection current and b the decay coefficient. Since 
J0 is defined by the two molecule/electrode interfaces and 
does not vary significantly between conjugated 
hydrocarbons, we compared the conductance plots of the 
self-assembly of (M)-CF-2 with the one of the known self-
assembly of S,S'-(ethyne-1,2-diylbis(4,1-phenylene)) 
diethanethioate (OPE2).26 Since OPE2 is a conjugated 
molecule of comparable length to (M)-CF-2, the observed 
overlap between the plots of the two systems is strong 
evidence that (M)-CF-2 forms densely-packed self-
assemblies of upright molecules uniformly bound to the 
substrate. On the other hand, since allenes may present 
photo-instability under certain conditions,27,28 the same 
measurements were performed during and after light 
irradiation to evaluate this aspect, with no significant 
changes observed, suggesting a strong structural stability 



of the self-assembled (M)-CF-2 monolayers at room 
temperature (Figure 1, for more information see the SI). 

The integrity of the self-assembled CF-2 molecules after self-
assembly was confirmed by the observed C 1s and N 1s X-ray 
photoelectron spectroscopy (XPS) spectra, each with a single 
distinguishable peak centered around 285 eV and 400 eV, 
respectively (Figure 2a,b). Therefore, no significant 
degradation to organometallic alkynylic29,30 or metal-organic 
pyridinic31,32 species occurred during preparation (cf. discussion 
in SI). The S 2p signature reveals a dominating doublet (green, 
with S 2p3/2 component binding energy amounting to 162 eV, 
Figure 2c) matching nicely with the Sulphur reference spectrum 
of an alkanethiol self-assembled monolayer (SAM) on the same 
substrate type (C14-S/Au, cf. Figure S11a) and previously 
reported values,33–36 thus indicating successful anchoring 
through thiolate chemisorbed to the Au substrate. The minority 
species (blue components) is attributed to the presence of an 
organothiol with a different chemical nature resulting e.g. from 
anchoring at step edges or different adsorption configurations. 
In SAMs constructed from aryl-containing compounds on 
untreated commercial Au/Mica substrates such features are 
commonly observed.37–40 Potentially, the peak could originate 
from atomic Sulphur from cracked molecules or 
contamination.41,42 However, this is not likely since the 
signature of a sample with atomic Sulphur is different (see 
discussion related to Figure S11b in the SI). Noteworthy, the 
absence of further Sulphur peaks, specifically at higher binding 
energy around 164 eV, indicates the absence of multilayer 
formation through the utilized preparation process.43 
Additionally, the O 1s XPS spectrum (Figure 2d) is fitted with 
one component binding energy of 532 eV, which corresponds 
to a terminal dimethyl alcohol group.30 The width of the peak 
(fwhm = 2.08 eV) is larger than the expected width for a single 
species (~1.5 eV). We attribute this broadening to OH groups 
experiencing different non-covalent interactions with 
neighboring molecules44 consistent with the inhomogeneity of 
the film indicated by the previous XPS spectra. Overall, these 
data confirm not only the abstraction of the acetyl moiety and 
the efficient chemisorption via the thiolate group of (M)-CF-2 
molecules, but also the RT stability of the formed UCAs and 
their persistence under ambient conditions over several days. 

 

Figure 2 (a-d) XP spectra of (M)-CF-2 framework on Au/Mica 
substrate the C 1s, N 1d, S 2p, and O 1s regions are depicted in (a), 
(b), (c), and (d), respectively. (e) N K-edge NEXAFS signatures 

recorded with three different incidence angles (25°, 53°, and 
90°). (f) Scheme showing the proposed, approximate 
orientation of (M)-CF-2 molecules in the upstanding 
monolayer architecture. 

For more structural elucidation, near-edge X-ray 
absorption-fine-structure (NEXAFS) N K-edge spectra 
were taken with three different incident angles q = 25°, 53°, 
90° (Figure 2e). The p*-region (below 404 eV) contains 
two discernible and differently broadened peaks, thus a 
richer structure than pure pyridine.45 The more complex 
signature is explained by the interaction with the nearby 
ethynylene p-system and packing effects inducing splitting 
of resonances and intensity redistribution.46–48 The spectra 
exhibit no discernible angular dependence of the first two 
p* resonances centered at 399 and 401 eV. A fitting of the 
leading edge of the experimental spectra with Voigt peaks 
(Figure S12a) and comparison of the peak intensities to 
theoretical curves49 indicates an average adsorption angle 
a of the pyridine moiety between 50° and 60° (between the 
normal of the ring plane and the surface normal, Figure 
S12b), clearly ruling out a flat adsorption geometry as the 
dominant configuration. On the other hand, the consistent 
anchoring via the thiol groups rules out a random 
orientation of the pyridine rings50. Thus, even though the 
quality of the film is inferior to what has been achieved 
with simple alkene-SAMs, the combined X-ray 
spectroscopic data evidence the formation of a monolayer-
thin CF-2 upstanding chiral architecture and indicate a 
preferential average inclination of the molecular backbone 
of approximately 30° (Figure 2f, for more detail see the SI), 
in accordance with the ellipsometry experiments. 

 

Figure 3 Multilayer (top), as obtained from sublimation of 
CF-2 by heating up to 230 °C at 10–8 kPa, and monolayer 
(bottom) circular dichroism (lines, left scales) and second 
harmonic generation (dots, right scales) measurements of (M)-
CF-2 (red) and (P)-CF-2 (blue) upstanding architectures on 
custom-made transparent substrates (black). 

The exploration of chiroptical properties of interfaces is 
greatly hindered by the small amount of molecules as 
compared to solution-based setups, rendering analysis 
challenging due to the minute amount of the response 
signal. In order to improve chiroptical sensitivity, extensive 
efforts have been made in the development of more 
sophisticated techniques.51 In this regard, nonlinear chiral 
effects have been shown to be up to three orders of 
magnitude larger than the corresponding linear ones.52–55 In 
order to evaluate the chiroptical properties of the CF-2 self-
assemblies, we measure second harmonic generation 
circular dichroism (SHG-CD).52–54,56–58 The corresponding 
g-values were then calculated according to the following 
equation (LCP and RCP stand for left and right circularly 
polarized light): 
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We observed a 1000-fold magnification of the SHG-CD 
g-values for monolayer-thin films of (P)-CF-2 and (M)-CF-2 
molecules compared to the linear CD g-values of CF-2 in 
multilayer or solution. These results enabled the clear 
observation of the chiroptical response for the developed 
device-compatible surfaces (Figure 3, see also Figure S2 in the 
SI). 
 
Conclusions 

In conclusion, we have designed and synthesized enantiopure 
(P)-CF-2 and (M)-CF-2 and successfully anchored them to Au 
surfaces constructing stable upstanding chiral architectures. 
The self-assembly was verified by means of ellipsometry, XPS, 
and NEXAFS. More importantly, SHG-CD measurements 
proved that the afforded molecule-thin sheets possess 
chiroptical activity. These interfaces were successfully 
integrated in electronic circuitry, thus demonstrating suitability 
for opto-electronic devices. The higher accuracy and reliability 
offered by chiroptical sensing techniques along with the more 
characteristic signatures related to varying target compounds 
render upstanding chiral architectures as a promising novel 
class of robust chiroptical materials. We are currently pursuing 
nanoparticle stabilization and electric isolation of metal 
surfaces to develop chiroptical sensing with plasmonic 
nanoparticles as well as to control and inhibit corrosion on 
artworks. 
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