129 research outputs found

    Simultaneous measurements of water optical properties by AC9 transmissometer and ASP-15 Inherent Optical Properties meter in Lake Baikal

    Get PDF
    Measurements of optical properties in media enclosing Cherenkov neutrino telescopes are important not only at the moment of the selection of an adequate site, but also for the continuous characterization of the medium as a function of time. Over the two last decades, the Baikal collaboration has been measuring the optical properties of the deep water in Lake Baikal (Siberia) where, since April 1998, the neutrino telescope NT-200 is in operation. Measurements have been made with custom devices. The NEMO Collaboration, aiming at the construction of a km3 Cherenkov neutrino detector in the Mediterranean Sea, has developed an experimental setup for the measurement of oceanographic and optical properties of deep sea water. This setup is based on a commercial transmissometer. During a joint campaign of the two collaborations in March and April 2001, light absorption, scattering and attenuation in water have been measured. The results are compatible with previous ones reported by the Baikal Collaboration and show convincing agreement between the two experimental techniques.Comment: 16 pages, submitted to NIM-

    Π˜Π½Ρ‚Π΅Ρ€Π»Π΅ΠΉΠΊΠΈΠ½ IL-1Ξ² стимулируСт Ρ€Π΅Π²ΠΈΡ‚Π°Π»ΠΈΠ·Π°Ρ†ΠΈΡŽ хрящСвого матрикса Π½Π°Π·Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ Ρ…ΠΎΠ½Π΄Ρ€ΠΎΡ†ΠΈΡ‚Π°ΠΌΠΈ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° in vitro

    Get PDF
    Revitalization of decellularized or devitalized matrix scaffolds in tracheal tissue engineering typically involves seeding the autologous recipient cells or allogeneic cells under long-term cultivation. Objective: to study the capability of human nasal chondrocytes for colonization of devitalized scaffolds based on native human tracheal cartilage, with proinflammatory stimulation (cytokine) by adding Interleukin-1-beta (IL-1Ξ²) to the culture medium. Materials and methods. Scaffolds for tracheal tissue engineering were obtained from native human tracheal cartilage through devitalization and laser etching. The scaffold was revitalized by seeding the human nasal chondrocytes. Histological examination was performed after staining with hematoxylin and safranin-O, with further microscopy using a Nikon Eclipse L200 light microscope. X-ray microtomography was performed on a Phoenix nanotom m apparatus. Electron microscopy was performed on a Nova NanoSEM 230 setup. Results. There was statistically significant increase in the intensity of colonization (p = 0.0008) with nasal chondrocytes and stimulation of their migration activity (p < 0.0001) in the presence of IL-1Ξ² compared with the control groups. Conclusion. Addition of proinflammatory cytokine IL-1Ξ² (1 ΞΌg/ml) to the culture medium enhances volumetric seeding of devitalized cartilage scaffold with human nasal chondrocytes, allowing to create highly revitalized materials for tracheal tissue engineering.РСвитализация Π΄Π΅Ρ†Π΅Π»Π»ΡŽΠ»ΡΡ€ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΈΠ»ΠΈ Π΄Π΅Π²ΠΈΡ‚Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… матриксов для Ρ‚ΠΊΠ°Π½Π΅Π²ΠΎΠΉ ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€ΠΈΠΈ Ρ‚Ρ€Π°Ρ…Π΅ΠΈ, ΠΊΠ°ΠΊ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ, ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅Ρ‚ засСлСниС матрикса-носитСля Π½Π° основС донорской хрящСвой Ρ‚ΠΊΠ°Π½ΠΈ Π°ΡƒΡ‚ΠΎΠ»ΠΎΠ³ΠΈΡ‡Π½Ρ‹ΠΌΠΈ ΠΊΠ»Π΅Ρ‚ΠΊΠ°ΠΌΠΈ Ρ€Π΅Ρ†ΠΈΠΏΠΈΠ΅Π½Ρ‚Π° ΠΈΠ»ΠΈ Π°Π»Π»ΠΎΠ³Π΅Π½Π½Ρ‹ΠΌΠΈ ΠΊΠ»Π΅Ρ‚ΠΊΠ°ΠΌΠΈ Π² условиях Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡ. ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹ – ΠΈΠ·ΡƒΡ‡ΠΈΡ‚ΡŒ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΊΠΎΠ»ΠΎΠ½ΠΈΠ·Π°Ρ†ΠΈΠΈ Π΄Π΅Π²ΠΈΡ‚Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… матриксов Π½Π° основС СстСствСнной хрящСвой Ρ‚ΠΊΠ°Π½ΠΈ Ρ‚Ρ€Π°Ρ…Π΅ΠΈ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° Π½Π°Π·Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ Ρ…ΠΎΠ½Π΄Ρ€ΠΎΡ†ΠΈΡ‚Π°ΠΌΠΈ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° ΠΏΡ€ΠΈ Π΄ΠΎΠ±Π°Π²Π»Π΅Π½ΠΈΠΈ ΠΊ ΠΏΠΈΡ‚Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ срСдС ΠΏΡ€ΠΎΠ²ΠΎΡΠΏΠ°Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ†ΠΈΡ‚ΠΎΠΊΠΈΠ½Π° Π˜Π½Ρ‚Π΅Ρ€Π»Π΅ΠΉΠΊΠΈΠ½-1-Π±Π΅Ρ‚Π° (IL-1Ξ²). ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. ΠœΠ°Ρ‚Ρ€ΠΈΠΊΡΡ‹-носитСли для Ρ‚ΠΊΠ°Π½Π΅Π²ΠΎΠΉ ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€ΠΈΠΈ Ρ‚Ρ€Π°Ρ…Π΅ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π°Π»ΠΈ Π½Π° основС СстСствСнной хрящСвой Ρ‚ΠΊΠ°Π½ΠΈ Ρ‚Ρ€Π°Ρ…Π΅ΠΈ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π΄Π΅Π²ΠΈΡ‚Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΈ Π»Π°Π·Π΅Ρ€Π½ΠΎΠ³ΠΎ травлСния. Π Π΅Π²ΠΈΡ‚Π°Π»ΠΈΠ·Π°Ρ†ΠΈΡŽ матриксов ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ ΠΏΡƒΡ‚Π΅ΠΌ засСлСния Π½Π°Π·Π°Π»ΡŒΠ½Ρ‹Ρ… Ρ…ΠΎΠ½Π΄Ρ€ΠΎΡ†ΠΈΡ‚ΠΎΠ² Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°. ГистологичСскоС исслСдованиС ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ послС ΠΎΠΊΡ€Π°ΡˆΠΈΠ²Π°Π½ΠΈΡ гСматоксилином ΠΈ сафранином-О с дальнСйшСй микроскопиСй Π½Π° свСтовом микроскопС Nikon Eclipse L200. РСнтгСновская микротомография Π²Ρ‹ΠΏΠΎΠ»Π½ΡΠ»Π°ΡΡŒ Π½Π° Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Π΅ Phoenix nanotom m. ЭлСктронная микроскопия ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»Π°ΡΡŒ Π½Π° установкС Nova NanoSEM 230. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. ВыявлСно статистичСски Π·Π½Π°Ρ‡ΠΈΠΌΠΎΠ΅ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ интСнсивности ΠΊΠΎΠ»ΠΎΠ½ΠΈΠ·Π°Ρ†ΠΈΠΈ Π½Π°Π·Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ Ρ…ΠΎΠ½Π΄Ρ€ΠΎΡ†ΠΈΡ‚Π°ΠΌΠΈ (p = 0,0008) ΠΈ стимулированиС ΠΈΡ… ΠΌΠΈΠ³Ρ€Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ активности (p < 0,0001) Π² присутствии IL-1Ξ² ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Ρ‹ΠΌΠΈ Π³Ρ€ΡƒΠΏΠΏΠ°ΠΌΠΈ. Π’Ρ‹Π²ΠΎΠ΄Ρ‹. Π”ΠΎΠ±Π°Π²Π»Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠ²ΠΎΡΠΏΠ°Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ†ΠΈΡ‚ΠΎΠΊΠΈΠ½Π° IL-1Ξ² Π² ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ 1 ΠΌΠΊΠ³/ΠΌΠ» ΠΊ ΠΏΠΈΡ‚Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ срСдС способствуСт ΠΎΠ±ΡŠΠ΅ΠΌΠ½ΠΎΠΌΡƒ засСлСнию Π΄Π΅Π²ΠΈΡ‚Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ хрящСвого матрикса Π½Π°Π·Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ Ρ…ΠΎΠ½Π΄Ρ€ΠΎΡ†ΠΈΡ‚Π°ΠΌΠΈ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°, позволяя ΡΠΎΠ·Π΄Π°Π²Π°Ρ‚ΡŒ высокорСвитализированныС ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ для Ρ‚ΠΊΠ°Π½Π΅Π²ΠΎΠΉ ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€ΠΈΠΈ Ρ‚Ρ€Π°Ρ…Π΅ΠΈ

    Π­ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Π°Ρ ортотопичСская имплантация Ρ‚ΠΊΠ°Π½Π΅ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€Π½ΠΎΠΉ конструкции Ρ‚Ρ€Π°Ρ…Π΅ΠΈ, созданной Π½Π° основС засСлСнного ΠΌΠ΅Π·Π΅Π½Ρ…ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΈ ΡΠΏΠΈΡ‚Π΅Π»ΠΈΠ°Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΊΠ»Π΅Ρ‚ΠΊΠ°ΠΌΠΈ Π΄Π΅Π²ΠΈΡ‚Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ матрикса

    Get PDF
    Objective: to study the viability of a tissue-engineered graft (TEG) based on a devitalized tracheal scaffold (DTS) seeded with mesenchymal stromal and epithelial cells in an experiment on rabbits with assessment of cytocompatibility and biocompatibility in vivo. Materials and methods. Syngeneic mesenchymal stromal bone marrow cells (MSBMCs) and syngeneic lung epithelial cells of rabbit were obtained. The morphology and phenotype of the MSBMC culture were confirmed via immunofluorescence staining for CD90 and CD271 markers. Pulmonary epithelial cells obtained by enzymatic treatment of minced rabbit lung tissue were stained with CKPan, CK8/18 and CK14 markers characteristic of epithelial cells. The donor trachea was devitalized in three successive freezethawing cycles. Double-layer cell seeding of DTS was performed under static and dynamic culturing. Orthotopic implantation of TEGs was performed at the site of the anterolateral wall defect in the rabbit that was formed as a result of tracheal resection over four rings. Results were evaluated by computed tomography, histological and immunohistochemical analyzes. Results. A TEG implant, based on DTS, with bilayer colonization by cell cultures of rabbit MSBMC and epithelial cells was obtained. Three months after implantation, TEG engraftment was noted, no tracheal wall stenosis was observed. However, slight narrowing of the lumen in the implantation site was noted. Six months after implantation, viability of TEG was confirmed by histological method. Epithelialization and vascularization of the tracheal wall, absence of signs of purulent inflammation and aseptic necrosis were shown. The small narrowing of the lumen of trachea was found to have been caused by chronic inflammation due to irritation of the mucous membrane with suture material. Conclusion. A new model for assessing the viability of a tissue engineering implant when closing a critical airway defect was created. The developed TEG – based on DTS seeded (bilayer) by lung epithelial cells and BMSCs – was successfully used to replace non-extended tracheal defects in an in vivo experiment. The use of tracheal tissue-engineered graft for orthotopic implantation showed biocompatibility with minimal tissue response.ЦСль. Π˜Π·ΡƒΡ‡ΠΈΡ‚ΡŒ ΠΆΠΈΠ·Π½Π΅ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ Ρ‚ΠΊΠ°Π½Π΅ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€Π½ΠΎΠΉ конструкции (ВИК) Π½Π° основС Π΄Π΅Π²ΠΈΡ‚Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Π°Ρ…Π΅Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ матрикса (Π”Π’Πœ), засСлСнного ΠΌΠ΅Π·Π΅Π½Ρ…ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΡΡ‚Ρ€ΠΎΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΈ ΡΠΏΠΈΡ‚Π΅Π»ΠΈΠ°Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΊΠ»Π΅Ρ‚ΠΊΠ°ΠΌΠΈ, Π½Π° ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΎΡ†Π΅Π½ΠΊΠΈ ТизнСспособности Ρ‚ΠΊΠ°Π½Π΅ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€Π½ΠΎΠ³ΠΎ ΠΈΠΌΠΏΠ»Π°Π½Ρ‚Π°Ρ‚Π° ΠΏΡ€ΠΈ Π·Π°ΠΊΡ€Ρ‹Ρ‚ΠΈΠΈ критичСского Π΄Π΅Ρ„Π΅ΠΊΡ‚Π° Π΄Ρ‹Ρ…Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΏΡƒΡ‚Π΅ΠΉ Ρƒ ΠΊΡ€ΠΎΠ»ΠΈΠΊΠΎΠ². ΠžΡ†Π΅Π½ΠΈΡ‚ΡŒ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π» ВИК ΠΊ ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠ°Π½ΠΈΡŽ ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΠ³ΠΎ просвСта Ρ‚Ρ€Π°Ρ…Π΅ΠΈ Π² области ΠΈΠΌΠΏΠ»Π°Π½Ρ‚Π°Ρ†ΠΈΠΈ. ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ сингСнныС ΠΌΠ΅Π·Π΅Π½Ρ…ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ ΡΡ‚Ρ€ΠΎΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ костного ΠΌΠΎΠ·Π³Π° (МБК КМ) ΠΈ сингСнныС эпитСлиоциты Π»Π΅Π³ΠΊΠΎΠ³ΠΎ ΠΊΡ€ΠΎΠ»ΠΈΠΊΠ°. ΠœΠΎΡ€Ρ„ΠΎΠ»ΠΎΠ³ΠΈΡŽ ΠΈ Ρ„Π΅Π½ΠΎΡ‚ΠΈΠΏ ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Ρ‹ МБК КМ ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π°Π»ΠΈ ΠΈΠΌΠΌΡƒΠ½ΠΎΡ„Π»ΡŽΠΎΡ€Π΅ΡΡ†Π΅Π½Ρ‚Π½Ρ‹ΠΌ ΠΎΠΊΡ€Π°ΡˆΠΈΠ²Π°Π½ΠΈΠ΅ΠΌ Π½Π° ΠΌΠ°Ρ€ΠΊΠ΅Ρ€Ρ‹ CD90 ΠΈ CD271. ΠšΠ»Π΅Ρ‚ΠΊΠΈ Π»Π΅Π³ΠΎΡ‡Π½ΠΎΠ³ΠΎ эпитСлия, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ энзиматичСской ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΈΠ·ΠΌΠ΅Π»ΡŒΡ‡Π΅Π½Π½ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ Π»Π΅Π³ΠΊΠΎΠ³ΠΎ ΠΊΡ€ΠΎΠ»ΠΈΠΊΠ°, Π±Ρ‹Π»ΠΈ ΠΎΠΊΡ€Π°ΡˆΠ΅Π½Ρ‹ Π½Π° Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹Π΅ для ΡΠΏΠΈΡ‚Π΅Π»ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΌΠ°Ρ€ΠΊΠ΅Ρ€Ρ‹ CKPan, CK8/18 ΠΈ CK14. ДСвитализация донорской Ρ‚Ρ€Π°Ρ…Π΅ΠΈ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π° трСмя ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ Ρ†ΠΈΠΊΠ»Π°ΠΌΠΈ замораТивания–оттаивания. ДвухслойноС засСлСниС Π”Π’Πœ ΠΊΠ»Π΅Ρ‚ΠΊΠ°ΠΌΠΈ Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ΠΎ Π² условиях статичного ΠΈ динамичСского ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡ. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π° ортотопичСская имплантация ВИК Π½Π° мСсто Π΄Π΅Ρ„Π΅ΠΊΡ‚Π° ΠΏΠ΅Ρ€Π΅Π΄Π½Π΅Π±ΠΎΠΊΠΎΠ²ΠΎΠΉ стСнки Ρ‚Ρ€Π°Ρ…Π΅ΠΈ ΠΊΡ€ΠΎΠ»ΠΈΠΊΠ°, сформированного Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ Ρ€Π΅Π·Π΅ΠΊΡ†ΠΈΠΈ Ρ‚Ρ€Π°Ρ…Π΅ΠΈ Π½Π° протяТСнии Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ… ΠΊΠΎΠ»Π΅Ρ†. ΠžΡ†Π΅Π½ΠΊΠ° Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Π° ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½ΠΎΠΉ Ρ‚ΠΎΠΌΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ, гистологичСского ΠΈ иммуногистохимичСского Π°Π½Π°Π»ΠΈΠ·ΠΎΠ². Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ ΠΈΠΌΠΏΠ»Π°Π½Ρ‚Π°Ρ‚ ВИК Π½Π° основС Π”Π’Πœ с двухслойным засСлСниСм ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹ΠΌΠΈ ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Π°ΠΌΠΈ МБК КМ ΠΈ эпитСлиоцитов ΠΊΡ€ΠΎΠ»ΠΈΠΊΠ°. Π§Π΅Ρ€Π΅Π· 3 мСс. послС ΠΈΠΌΠΏΠ»Π°Π½Ρ‚Π°Ρ†ΠΈΠΈ ΠΎΡ‚ΠΌΠ΅Ρ‡Π°Π»ΠΎΡΡŒ ΠΏΡ€ΠΈΠΆΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ВИК, стСнозирования стСнки Ρ‚Ρ€Π°Ρ…Π΅ΠΈ Π½Π΅ наблюдалось, ΠΎΠ΄Π½Π°ΠΊΠΎ ΠΎΡ‚ΠΌΠ΅Ρ‡Π°Π»ΠΎΡΡŒ Π½Π΅Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ суТСниС просвСта Π² области ΠΈΠΌΠΏΠ»Π°Π½Ρ‚Π°Ρ†ΠΈΠΈ. На 6-ΠΉ мСс. послС ΠΈΠΌΠΏΠ»Π°Π½Ρ‚Π°Ρ†ΠΈΠΈ ΠΆΠΈΠ·Π½Π΅ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ Ρ‚ΠΊΠ°Π½Π΅ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€Π½ΠΎΠΉ конструкции ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π°Π»Π°ΡΡŒ гистологичСским ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ. Показана эпитСлизация ΠΈ васкуляризация стСнки Ρ‚Ρ€Π°Ρ…Π΅ΠΈ, отсутствиС ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΎΠ² Π³Π½ΠΎΠΉΠ½ΠΎΠ³ΠΎ воспалСния ΠΈ асСптичСского Π½Π΅ΠΊΡ€ΠΎΠ·Π°. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π° ΠΏΡ€ΠΈΡ‡ΠΈΠ½Π° нСбольшого суТСния просвСта Ρ‚Ρ€Π°Ρ…Π΅ΠΈ хроничСскоС воспалСниС, Π²Ρ‹Π·Π²Π°Π½Π½ΠΎΠ΅ Ρ€Π°Π·Π΄Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ΠΌ слизистой ΡˆΠΎΠ²Π½Ρ‹ΠΌ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠΌ. Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π° модСль для ΠΎΡ†Π΅Π½ΠΊΠΈ ТизнСспособности Ρ‚ΠΊΠ°Π½Π΅ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€Π½ΠΎΠ³ΠΎ ΠΈΠΌΠΏΠ»Π°Π½Ρ‚Π°Ρ‚Π° ΠΏΡ€ΠΈ Π·Π°ΠΊΡ€Ρ‹Ρ‚ΠΈΠΈ критичСского Π΄Π΅Ρ„Π΅ΠΊΡ‚Π° Π΄Ρ‹Ρ…Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΏΡƒΡ‚Π΅ΠΉ. Разработанная ВИК Π½Π° основС Π”Π’Πœ, двухслойно засСлСнного эпитСлиоцитами Π»Π΅Π³ΠΊΠΎΠ³ΠΎ ΠΈ МБК КМ, Π±Ρ‹Π»Π° ΡƒΡΠΏΠ΅ΡˆΠ½ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½Π° для замСщСния нСпротяТСнных Π΄Π΅Ρ„Π΅ΠΊΡ‚ΠΎΠ² Ρ‚Ρ€Π°Ρ…Π΅ΠΈ Π² экспСримСнтС in vivo. Минимальная тканСвая рСакция Π½Π° ВИК Ρ‚Ρ€Π°Ρ…Π΅ΠΈ Π±Ρ‹Π»Π° обусловлСна Π±ΠΈΠΎΡΠΎΠ²ΠΌΠ΅ΡΡ‚ΠΈΠΌΠΎΡΡ‚ΡŒΡŽ ΠΈΠΌΠΏΠ»Π°Π½Ρ‚Π°Ρ‚Π°
    • …
    corecore