46 research outputs found

    The age of randomized clinical trials: three important aspects of randomized clinical trials in cardiovascular pharmacotherapy with examples from lipid, diabetes, and antithrombotic trials.

    Get PDF
    This review article aims to explain the important issues that data safety monitoring boards (DSMB) face when considering early termination of a trial and is specifically addressed to the needs of clinical and research cardiologists. We give an insight into the overall background and then focus on the three principal reasons for stopping trials, i.e. efficacy, futility, and harm. The statistical essentials are also addressed to familiarize clinicians with the key principles. The topic is further highlighted by numerous examples from lipid trials and antithrombotic trials. This is followed by an overview of regulatory aspects, including an insight into industry–investigator interactions. To conclude, we summarize the key elements that are the basis for a decision to stop a randomized clinical trial (RCT)

    Update on management of hypokalemia and goals for the lower potassium level in patients with cardiovascular disease: A review in collaboration with the European Society of Cardiology Working Group on Cardiovascular Pharmacotherapy.

    Get PDF
    Hypokalaemia is common in patients with cardiovascular disease. In this review, we emphasize the importance of tight potassium regulation in patients with cardiovascular disease based on findings from observational studies. To enhance the understanding, we also describe the mechanisms of potassium homeostasis maintenance, the most common causes of hypokalaemia and present strategies for monitoring and management of low potassium levels. We propose elevation of potassium in asymptomatic patients with lower normal concentrations and concurrent cardiovascular disease. These proposals are intended to assist clinicians until more evidence is available

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    A synthesis of the arctic terrestrial and marine carbon cycles under pressure from a dwindling cryosphere

    Get PDF

    Regional frequency analysis of extreme rainfalls using partial L moments method

    Get PDF
    An approach based on regional frequency analysis using L moments and LH moments are revisited in this study. Subsequently, an alternative regional frequency analysis using the partial L moments (PL moments) method is employed, and a new relationship for homogeneity analysis is developed. The results were then compared with those obtained using the method of L moments and LH moments of order two. The Selangor catchment, consisting of 37 sites and located on the west coast of Peninsular Malaysia, is chosen as a case study. PL moments for the generalized extreme value (GEV), generalized logistic (GLO), and generalized Pareto distributions were derived and used to develop the regional frequency analysis procedure. PL moment ratio diagram and Z test were employed in determining the best-fit distribution. Comparison between the three approaches showed that GLO and GEV distributions were identified as the suitable distributions for representing the statistical properties of extreme rainfall in Selangor. Monte Carlo simulation used for performance evaluation shows that the method of PL moments would outperform L and LH moments methods for estimation of large return period events

    Facing the challenge of polypharmacy when prescribing for older people with cardiovascular disease. A review by the European Society of Cardiology Working Group on Cardiovascular Pharmacotherapy

    No full text
    Population ageing has resulted in an increasing number of older people living with chronic diseases (multimorbidity) requiring five or more medications daily (polypharmacy). Ageing produces important changes in the cardiovascular system and represents the most potent single cardiovascular risk factor. Cardiovascular diseases (CVDs) constitute the greatest burden for older people, their caregivers, and healthcare systems. Cardiovascular pharmacotherapy in older people is complex because age-related changes in body composition, organ function, homeostatic mechanisms, and comorbidities modify the pharmacokinetic and pharmacodynamic properties of many commonly used cardiovascular and non-cardiovascular drugs. Additionally, polypharmacy increases the risk of adverse drug reactions and drug interactions, which in turn can lead to increased morbi-mortality and healthcare costs. Unfortunately, evidence of drug efficacy and safety in older people with multimorbidity and polypharmacy is limited because these individuals are frequently underrepresented/excluded from clinical trials. Moreover, clinical guidelines are largely written with a single-disease focus and only occasionally address the issue of coordination of care, when and how to discontinue treatments, if required, or how to prioritize recommendations for patients with multimorbidity and polypharmacy. This review analyses the main challenges confronting healthcare professionals when prescribing in older people with CVD, multimorbidity, and polypharmacy. Our goal is to provide information that can contribute to improving drug prescribing, efficacy, and safety, as well as drug adherence and clinical outcomes

    Facing the challenge of polypharmacy when prescribing for older people with cardiovascular disease. A review by the European Society of Cardiology Working Group on Cardiovascular Pharmacotherapy

    No full text
    Population ageing has resulted in an increasing number of older people living with chronic diseases (multimorbidity) requiring five or more medications daily (polypharmacy). Ageing produces important changes in the cardiovascular system and represents the most potent single cardiovascular risk factor. Cardiovascular diseases (CVD) constitute the greatest burden for older people, their caregivers, and healthcare systems. Cardiovascular pharmacotherapy in older people is complex because age-related changes in body composition, organ function, homeostatic mechanisms and comorbidities modify the pharmacokinetic and pharmacodynamic properties of many commonly used cardiovascular and non-cardiovascular drugs. Additionally, polypharmacy increases the risk of adverse drug reactions and drug-interactions, which in turn can lead to increased morbi-mortality and healthcare costs. Unfortunately, evidence of drug efficacy and safety in older people with multimorbidity and polypharmacy is limited because these individuals are frequently under-represented/excluded from clinical trials. Moreover, clinical guidelines are largely written with a single-disease focus and only occasionally address the issue of coordination of care, when and how to discontinue treatments, if required, or how to prioritize recommendations for patients with multimorbidity and polypharmacy. This review analyses the main challenges confronting healthcare professionals when prescribing in older people with CVD, multimorbidity and polypharmacy. Our goal is to provide information that can contribute to improve drug prescribing, efficacy, and safety, as well as drug adherence and clinical outcomes

    The Role of Pharmacogenomics in Contemporary Cardiovascular Therapy: A position statement from the European Society of Cardiology Working Group on Cardiovascular Pharmacotherapy.

    Get PDF
    There is a strong and ever-growing body of evidence regarding the use of pharmacogenomics to inform cardiovascular pharmacology. However, there is no common position taken by international cardiovascular societies to unite diverse availability, interpretation and application of such data, nor is there recognition of the challenges of variation in clinical practice between countries within Europe. Aside from the considerable barriers to implementing pharmacogenomic testing and the complexities of clinically actioning results, there are differences in the availability of resources and expertise internationally within Europe. Diverse legal and ethical approaches to genomic testing and clinical therapeutic application also require serious thought. As direct-to-consumer genomic testing becomes more common, it can be anticipated that data may be brought in by patients themselves, which will require critical assessment by the clinical cardiovascular prescriber. In a modern, pluralistic and multi-ethnic Europe, self-identified race/ethnicity may not be concordant with genetically detected ancestry and thus may not accurately convey polymorphism prevalence. Given the broad relevance of pharmacogenomics to areas such as thrombosis and coagulation, interventional cardiology, heart failure, arrhythmias, clinical trials, and policy/regulatory activity within cardiovascular medicine, as well as to genomic and pharmacology subspecialists, this position statement attempts to address these issues at a wide-ranging level
    corecore