32 research outputs found

    Who pays for and who benefits from health care services in Uganda?

    Get PDF
    Background: Equity in health care entails payment for health services according to the capacity to pay and the receipt of benefits according to need. In Uganda, as in many African countries, although equity is extolled in government policy documents, not much is known about who pays for, and who benefits from, health services. This paper assesses both equity in the financing and distribution of health care benefits in Uganda. Methods: Data are drawn from the most recent nationally representative Uganda National Household Survey 2009/10. Equity in health financing is assessed considering the main domestic health financing sources (i.e., taxes and direct out-of-pocket payments). This is achieved using bar charts and standard concentration and Kakwani indices. Benefit incidence analysis is used to assess the distribution of health services for both public and non-public providers across socio-economic groups and the need for care. Need is assessed using limitations in functional ability while socioeconomic groups are created using per adult equivalent consumption expenditure. Results: Overall, health financing in Uganda is marginally progressive; the rich pay more as a proportion of their income than the poor. The various taxes are more progressive than out-of-pocket payments (e.g., the Kakwani index of personal income tax is 0.195 compared with 0.064 for out-of-pocket payments). However, taxes are a much smaller proportion of total health sector financing compared with out-of-pocket payments. The distribution of total health sector services benefitsis pro-rich. The richest quintile receives 19.2% of total benefits compared to the 17.9% received by the poorest quintile. The rich also receive a much higher share of benefits relative to their need. Benefits from public health units are pro-poor while hospital based care, in both public and non-public sectors are pro-rich. Conclusion: There is a renewed interest in ensuring equity in the financing and use of health services. Based on the results in this paper, it would seem that in order to safeguard such equity, there is a need for policy that focuses on addressing the health needs of the poor while continuing to ensure that the burden of financing health services does not rest disproportionately on the poor

    Monocyte Phenotype and IFN-γ-Inducible Cytokine Responses Are Associated with Cryptococcal Immune Reconstitution Inflammatory Syndrome.

    Get PDF
    A third of adults with AIDS and cryptococcal meningitis (CM) develop immune reconstitution inflammatory syndrome (IRIS) after initiating antiretroviral therapy (ART), which is thought to result from exaggerated inflammatory antigen-specific T cell responses. The contribution of monocytes to the immunopathogenesis of cryptococcal IRIS remains unclear. We compared monocyte subset frequencies and immune responses in HIV-infected Ugandans at time of CM diagnosis (IRIS-Baseline) for those who later developed CM-IRIS, controls who did not develop CM-IRIS (Control-Baseline) at CM-IRIS (IRIS-Event), and for controls at a time point matched for ART duration (Control-Event) to understand the association of monocyte distribution and immune responses with cryptococcal IRIS. At baseline, stimulation with IFN-γ ex vivo induced a higher frequency of TNF-α- and IL-6-producing monocytes among those who later developed IRIS. Among participants who developed IRIS, ex vivo IFN-γ stimulation induced higher frequencies of activated monocytes, IL-6⁺, TNF-α⁺ classical, and IL-6⁺ intermediate monocytes compared with controls. In conclusion, we have demonstrated that monocyte subset phenotype and cytokine responses prior to ART are associated with and may be predictive of CM-IRIS. Larger studies to further delineate innate immunological responses and the efficacy of immunomodulatory therapies during cryptococcal IRIS are warranted

    Cellular immune activation in cerebrospinal fluid from ugandans with cryptococcal meningitis and immune reconstitution inflammatory syndrome.

    Get PDF
    BACKGROUND: Human immunodeficiency virus (HIV)-associated cryptococcal meningitis (CM) is characterized by high fungal burden and limited leukocyte trafficking to cerebrospinal fluid (CSF). The immunopathogenesis of CM immune reconstitution inflammatory syndrome (IRIS) after initiation of antiretroviral therapy at the site of infection is poorly understood. METHODS: We characterized the lineage and activation status of mononuclear cells in blood and CSF of HIV-infected patients with noncryptococcal meningitis (NCM) (n = 10), those with CM at day 0 (n = 40) or day 14 (n = 21) of antifungal therapy, and those with CM-IRIS (n = 10). RESULTS: At diagnosis, highly activated CD8(+) T cells predominated in CSF in both CM and NCM. CM-IRIS was associated with an increasing frequency of CSF CD4(+) T cells (increased from 2.2% to 23%; P = .06), a shift in monocyte phenotype from classic to an intermediate/proinflammatory, and increased programmed death ligand 1 expression on natural killer cells (increased from 11.9% to 61.6%, P = .03). CSF cellular responses were distinct from responses in peripheral blood. CONCLUSIONS: After CM, T cells in CSF tend to evolve with the development of IRIS, with increasing proportions of activated CD4(+) T cells, migration of intermediate monocytes to the CSF, and declining fungal burden. These changes provide insight into IRIS pathogenesis and could be exploited to more effectively treat CM and prevent CM-IRIS

    Validation and Optimization of Host Immunological Bio-Signatures for a Point-of-Care Test for TB Disease.

    Get PDF
    The development of a non-sputum-based, point-of-care diagnostic test for tuberculosis (TB) is a priority in the global effort to combat this disease, particularly in resource-constrained settings. Previous studies have identified host biomarker signatures which showed potential, but there is a need to validate and refine these for development as a test. We recruited 1,403 adults presenting with symptoms suggestive of pulmonary TB at primary healthcare clinics in six countries from West, East and Southern Africa. Of the study cohort, 326 were diagnosed with TB and 787 with other respiratory diseases, from whom we randomly selected 1005 participants. Using Luminex® technology, we measured the levels of 20 host biomarkers in serum samples which we used to evaluate the diagnostic accuracy of previously identified and novel bio-signatures. Our previously identified seven-marker bio-signature did not perform well (sensitivity: 89%, specificity: 60%). We also identified an optimal, two-marker bio-signature with a sensitivity of 94% and specificity of 69% in patients with no history of previous TB. This signature performed slightly better than C-reactive protein (CRP) alone. The cut-off value for a positive diagnosis differed for human immuno-deficiency virus (HIV)-positive and -negative individuals. Notably, we also found that no signature was able to diagnose TB adequately in patients with a prior history of the disease. We have identified a two-marker, pan-African bio-signature which is more robust than CRP alone and meets the World Health Organization (WHO) target product profile requirements for a triage test in both HIV-negative and HIV-positive individuals. This signature could be incorporated into a point-of-care device, greatly reducing the necessity for expensive confirmatory diagnostics and potentially reducing the number of cases currently lost to follow-up. It might also potentially be useful with individuals unable to provide sputum or with paucibacillary disease. We suggest that the performance of TB diagnostic signatures can be improved by incorporating the HIV-status of the patient. We further suggest that only patients who have never had TB be subjected to a triage test and that those with a history of previous TB be evaluated using more direct diagnostic techniques

    Diagnostic accuracy of the Cepheid 3-gene host response fingerstick blood test in a prospective, multi-site study: interim results.

    Get PDF
    BACKGROUND: The development of a fast and accurate, non-sputum-based point-of-care triage test for tuberculosis (TB) would have a major impact on combating the TB burden worldwide. A new fingerstick blood test has been developed by Cepheid (the Xpert-MTB-Host Response (HR)-Prototype), which generates a 'TB score' based on mRNA expression of 3 genes. Here we describe the first prospective findings of the MTB-HR prototype. METHODS: Fingerstick blood from adults presenting with symptoms compatible with TB in South Africa, The Gambia, Uganda and Vietnam was analysed using the Cepheid GeneXpert MTB-HR prototype. Accuracy of the Xpert MTB-HR cartridge was determined in relation to GeneXpert Ultra results and a composite microbiological score (GeneXpert Ultra and liquid culture) with patients classified as having TB or other respiratory diseases (ORD). RESULTS: When data from all sites (n=75 TB, 120 ORD) were analysed, the TB score discriminated between TB and ORD with an AUC of 0·94 (CI, 0·91-0·97), sensitivity of 87% (CI, 77-93%) and specificity of 94% (88-97%). When sensitivity was set at 90% for a triage test, specificity was 86% (CI, 75-97%). These results were not influenced by HIV status or geographical location. When evaluated against a composite microbiological score (n=80 TB, 111 ORD), the TB score was able to discriminate between TB and ORD with an AUC of 0·88 (CI, 0·83-0·94), 80% sensitivity (CI, 76-85%) and 94% specificity (CI, 91-96%). CONCLUSIONS: Our interim data indicate the Cepheid MTB-HR cartridge reaches the minimal target product profile for a point of care triage test for TB using fingerstick blood, regardless of geographic area or HIV infection status

    Phosphodiesterase 4 Inhibition Reduces Innate Immunity and Improves Isoniazid Clearance of Mycobacterium tuberculosis in the Lungs of Infected Mice

    Get PDF
    Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) is one of the leading infectious disease causes of morbidity and mortality worldwide. Though current antibiotic regimens can cure the disease, treatment requires at least six months of drug therapy. One reason for the long duration of therapy is that the currently available TB drugs were selected for their ability to kill replicating organisms and are less effective against subpopulations of non-replicating persistent bacilli. Evidence from in vitro models of Mtb growth and mouse infection studies suggests that host immunity may provide some of the environmental cues that drive Mtb towards non-replicating persistence. We hypothesized that selective modulation of the host immune response to modify the environmental pressure on the bacilli may result in better bacterial clearance during TB treatment. For this proof of principal study, we compared bacillary clearance from the lungs of Mtb-infected mice treated with the anti-TB drug isoniazid (INH) in the presence and absence of an immunomodulatory phosphodiesterase 4 inhibitor (PDE4i), CC-3052. The effects of CC-3052 on host global gene expression, induction of cytokines, and T cell activation in the lungs of infected mice were evaluated. We show that CC-3052 modulates the innate immune response without causing generalized immune suppression. Immune modulation combined with INH treatment improved bacillary clearance and resulted in smaller granulomas and less lung pathology, compared to treatment with INH alone. This novel strategy of combining anti-TB drugs with an immune modulating molecule, if applied appropriately to patients, may shorten the duration of TB treatment and improve clinical outcome
    corecore