177 research outputs found

    Examining the customer journey of solar home system users in Rwanda and forecasting their future electricity demand

    Get PDF
    Globally, 771 million people lack access to electricity, out of which 75% live in Sub-Saharan Africa (IEA, 2020b). Electricity grid expansion can be costly in rural areas, which often have low population densities. Solar home systems (SHS) have provided people worldwide an alternative option to gain electricity access. A SHS consists of a solar panel, battery and accompanying appliances. This research aims to advance the understanding of the SHS customer journey using a case study of SHS customers in Rwanda. This study developed a framework outlining households’ pre- to post-purchase experiences, which included awareness and purchase, both current and future SHS usage and finally customers’ upgrade, switching and retention preferences. A mixed methods approach was utilised to examine these steps, including structured interviews with the SHS providers’ customers (n=100) and staff (n=19), two focus groups with customers (n=24), as well as a time series analysis and descriptive statistics of database customers (n=63,299). A convolutional neural network (CNN) was created to forecast individual SHS users’ future electricity consumption in the next week, month and three months based on their previous hourly usage. Despite the volatility of SHS usage data, the CNN was able to forecast individual users’ future electricity more accurately than the naïve baseline, which assumes a continuation of previous usage. The time series analysis revealed an evening usage peak for non-television users, whilst customers with a television experienced an additional peak around midday. SHS recommendations prior and post-purchase were common, highlighting the circular nature of the customer journey. The main purchase reason and usage activity were having a clean energy source and phone charging respectively. A better understanding of the SHS customer journey may increase the number of households with electricity access, as companies can better address the purchase barriers and tap into the power of customer recommendations

    Estimating peer effects in networks with peer encouragement designs

    Get PDF
    Peer effects, in which the behavior of an individual is affected by the behavior of their peers, are central to social science. Because peer effects are often confounded with homophily and common external causes, recent work has used randomized experiments to estimate effects of specific peer behaviors. These experiments have often relied on the experimenter being able to randomly modulate mechanisms by which peer behavior is transmitted to a focal individual. We describe experimental designs that instead randomly assign individuals’ peers to encouragements to behaviors that directly affect those individuals. We illustrate this method with a large peer encouragement design on Facebook for estimating the effects of receiving feedback from peers on posts shared by focal individuals. We find evidence for substantial effects of receiving marginal feedback on multiple behaviors, including giving feedback to others and continued posting. These findings provide experimental evidence for the role of behaviors directed at specific individuals in the adoption and continued use of communication technologies. In comparison, observational estimates differ substantially, both underestimating and overestimating effects, suggesting that researchers and policy makers should be cautious in relying on them

    Forecasting Solar Home System Customers’ Electricity Usage with a 3D Convolutional Neural Network to Improve Energy Access

    Get PDF
    Off-grid technologies, such as solar home systems (SHS), offer the opportunity to alleviate global energy poverty, providing a cost-effective alternative to an electricity grid connection. However, there is a paucity of high-quality SHS electricity usage data and thus a limited understanding of consumers’ past and future usage patterns. This study addresses this gap by providing a rare large-scale analysis of real-time energy consumption data for SHS customers (n = 63,299) in Rwanda. Our results show that 70% of SHS users’ electricity usage decreased a year after their SHS was installed. This paper is novel in its application of a three-dimensional convolutional neural network (CNN) architecture for electricity load forecasting using time series data. It also marks the first time a CNN was used to predict SHS customers’ electricity consumption. The model forecasts individual households’ usage 24 h and seven days ahead, as well as an average week across the next three months. The last scenario derived the best performance with a mean squared error of 0.369. SHS companies could use these predictions to offer a tailored service to customers, including providing feedback information on their likely future usage and expenditure. The CNN could also aid load balancing for SHS based microgrids

    Fairness Hub Technical Briefs: AUC Gap

    Full text link
    To measure bias, we encourage teams to consider using AUC Gap: the absolute difference between the highest and lowest test AUC for subgroups (e.g., gender, race, SES, prior knowledge). It is agnostic to the AI/ML algorithm used and it captures the disparity in model performance for any number of subgroups, which enables non-binary fairness assessments such as for intersectional identity groups. The teams use a wide range of AI/ML models in pursuit of a common goal of doubling math achievement in low-income middle schools. Ensuring that the models, which are trained on datasets collected in many different contexts, do not introduce or amplify biases is important for achieving the goal. We offer here a versatile and easy-to-compute measure of model bias for all the teams in order to create a common benchmark and an analytical basis for sharing what strategies have worked for different teams

    Evaluating a Learned Admission-Prediction Model as a Replacement for Standardized Tests in College Admissions

    Full text link
    A growing number of college applications has presented an annual challenge for college admissions in the United States. Admission offices have historically relied on standardized test scores to organize large applicant pools into viable subsets for review. However, this approach may be subject to bias in test scores and selection bias in test-taking with recent trends toward test-optional admission. We explore a machine learning-based approach to replace the role of standardized tests in subset generation while taking into account a wide range of factors extracted from student applications to support a more holistic review. We evaluate the approach on data from an undergraduate admission office at a selective US institution (13,248 applications). We find that a prediction model trained on past admission data outperforms an SAT-based heuristic and matches the demographic composition of the last admitted class. We discuss the risks and opportunities for how such a learned model could be leveraged to support human decision-making in college admissions.Comment: In Proceedings of the ACM Conference on Learning at Scale (L@S) 202

    Comparing adoption determinants of solar home systems, LPG and electric cooking for holistic energy services in Sub-Saharan Africa

    Get PDF
    Globally, rates of electrification and clean cooking are low, particularly in Sub-Saharan Africa. Off-grid energy solutions have a vital role to play in accelerating clean energy access to address Sustainable Development Goal 7. For organisations aiming to provide both electricity and cooking services, there is a need for holistic studies on adoption determinants to aid market expansion. This paper presents a comprehensive literature review of the adoption determinants and barriers for liquefied petroleum gas (LPG), solar home systems (SHS) and electric cooking (e-cooking) in Sub-Saharan Africa. A total of 40 adoption determinants were identified across the 71 publications examined. Of these, 30 determinants were shared by at least two of the technologies, whilst six were specifically linked to LPG and four to SHS. Key determinants that cut across technologies included reliability of alternative technologies (such as grid supply), reliable energy supply through the technology in question, affordability, household size and location (urban/rural). The findings show that there is an overlap in the demographics that use these technologies, as urban households often use SHS as a backup to the electricity grid and their cooking needs can feasibly be met by LPG or e-cooking devices. There is a clear opportunity for e-cooking devices to be sold as appliances for SHS. E-cooking devices such as electric pressure cookers can be complementary to LPG due to their suitability for cooking different foods. Pay-as-you-go models, which have a proven track record with improving access to SHS and are beginning to also be applied to LPG, have the potential to provide a strong foundation for scaling up of LPG and e-cooking services

    Effects of Automated Interventions in Programming Assignments: Evidence from a Field Experiment

    Full text link
    A typical problem in MOOCs is the missing opportunity for course conductors to individually support students in overcoming their problems and misconceptions. This paper presents the results of automatically intervening on struggling students during programming exercises and offering peer feedback and tailored bonus exercises. To improve learning success, we do not want to abolish instructionally desired trial and error but reduce extensive struggle and demotivation. Therefore, we developed adaptive automatic just-in-time interventions to encourage students to ask for help if they require considerably more than average working time to solve an exercise. Additionally, we offered students bonus exercises tailored for their individual weaknesses. The approach was evaluated within a live course with over 5,000 active students via a survey and metrics gathered alongside. Results show that we can increase the call outs for help by up to 66% and lower the dwelling time until issuing action. Learnings from the experiments can further be used to pinpoint course material to be improved and tailor content to be audience specific.Comment: 10 page
    corecore