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Peer effects, in which the behavior of an individual is affected by
the behavior of their peers, are central to social science. Because
peer effects are often confounded with homophily and common
external causes, recent work has used randomized experiments to
estimate effects of specific peer behaviors. These experiments
have often relied on the experimenter being able to randomly
modulate mechanisms by which peer behavior is transmitted to a
focal individual. We describe experimental designs that instead
randomly assign individuals’ peers to encouragements to behav-
iors that directly affect those individuals. We illustrate this method
with a large peer encouragement design on Facebook for estimat-
ing the effects of receiving feedback from peers on posts shared
by focal individuals. We find evidence for substantial effects of
receiving marginal feedback on multiple behaviors, including giv-
ing feedback to others and continued posting. These findings pro-
vide experimental evidence for the role of behaviors directed at
specific individuals in the adoption and continued use of communi-
cation technologies. In comparison, observational estimates differ
substantially, both underestimating and overestimating effects,
suggesting that researchers and policy makers should be cautious
in relying on them.
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Social interactions among people enable the spread of in-
formation, preferences, and behavior, including technology

adoption. Despite the unprecedented availability of detailed in-
formation on human interactions, credible identification of how
individuals affect each other has been difficult. Many of the
empirical studies that estimate these peer effects rely on ana-
lyzing observational (i.e., nonexperimental) data (e.g., refs. 1 and
2). These methods can incorrectly “detect” peer effects in their
absence (3–5) and can substantially overestimate them (6).
There are many causes of correlated behaviors in networks that
make it difficult to identify peer effects, including selective tie
formation [i.e., homophily (7)], unobserved correlated external
causes, and prior peer effects (4, 8, 9). Faced with these chal-
lenges, observational studies of peer effects are sometimes de-
scribed as tentatively providing evidence of peer effects (cf. refs.
10 and 11) or as providing upper bounds, rather than point es-
timates, for peer effects (6).
This paper presents designs for randomized experiments for

estimating peer effects in social networks that overcome com-
mon challenges to credible identification. We conducted a large
field experiment on Facebook that implements a peer encour-
agement design to estimate peer effects in the use of com-
munication technologies. In particular, many people share
information, personal media, or other content via online social
networks. Most of these services allow them to receive feedback
from their peers in the form of comments on their post and
expressions of approval (or disapproval). How does receiving
more or less of this feedback from peers affect use of these
technologies? Decision makers benefit from knowing the value
of receiving social feedback, relative to other potential actions,
as this informs the design of interfaces for giving feedback. For
social scientists, precisely estimating the effects of feedback is

important for, e.g., understanding network effects in the adop-
tion and continued use of communication technologies.
There is some theoretical and empirical support for expecting

substantial peer effects in initial adoption and use of communication
technologies. Individuals’ utilities from using such technologies
usually depend on peer adoption decisions, as this determines
who can be communicated with and the consequences of com-
munication. Prior work on Facebook specifically (12, 13), and
other related technologies (14, 15) has provided observational and
quasi-experimental evidence for peer effects in initial adoption,
content production, and sustained use. Other prior observational
research has found that receiving feedback (e.g., comments, “likes”)
is associated with higher rates of sharing; in particular, new users
who receive comments on their photos tend to share more photos in
the future (10). However, in the presence of confounding due to
homophily and common external causes, these prior observational
results are expected to overstate (or otherwise misstate) the re-
lationship between receiving feedback and subsequent behavior if
interpreted causally.

Peer Encouragement Designs
Randomized experiments are one appealing way to identify peer ef-
fects in the presence of unknown confounding (16–18). Although di-
rectly randomizing the behavior of existing peers in realistic settings is
generally not possible or desirable, multiple experimental designs
for learning about peer effects appear in the literature. Social
psychologists have used inauthentic, confederate peers since the
1950s (19, 20), often in artificial (e.g., laboratory) settings. Other
studies have induced random variation in the process of tie or
group formation (21–25). Although these approaches have been
successful at answering some important questions in the social
sciences, it is often not possible for such designs to credibly an-
swer questions about either existing peers or effects of specific
peer behaviors.
The widespread adoption of online social networks has facilitated in

situ studies of the effects of peers’ behaviors on individual behavior.
Much of the experimental work in this area has used mechanism
designs, which directly modulate mechanisms (or channels) by which
information about peer behavior is optionally or nondeterministically
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transmitted to a focal individual (ego) through the network (18, 26–
28). For example, Aral and Walker (26) randomize which peers are
sent viral messages to adopt a product, and Bakshy et al. (18) ran-
domize the number of personalized social cues in advertisements. The
causal directed acyclic graph (DAG) (29) shown in Fig. 1A illustrates a
mechanism design with binary peer behaviors and ego behavior.When
these designs involve enabling/disabling a mechanism of peer effects,
they allow estimating an average treatment effect on the treated
(ATT)—the effect of exposure to a peer behavior for those who
would normally be exposed; if the mechanism is normally de-
terministic, this is also an ATT for the peer behavior, not just for
exposure. Despite their advantages, mechanism designs are often
not possible or practical in many empirical settings, such as when
the mechanism is deterministic (i.e., information about a peer’s
behavior is always transmitted to the ego, such as feedback in an
online social network).

Encouragement Designs. We develop and illustrate a variation on
randomized encouragement designs for identifying effects in
networks. Encouragement designs (30) are widely used by social
and biomedical scientists when interested in the effects of be-
haviors not directly controlled by the experimenter. Units are
randomly assigned to an encouragement Zi, and the endogenous
behavior of interest Di and the outcome Yi are measured. For
example, in educational contexts, one may encourage children to
watch a particular educational program (31) or prepare for tests
(32). Not all parents or children may follow through with such
interventions, but it is still possible to analyze the causal effect of

the intervention for those who are induced to use the educational
materials by the randomized encouragement (i.e., for compliers).
For this purpose, the encouragement is treated as an instru-
mental variable (IV); that is, it is assumed that the encouragement
only affects outcomes by affecting the intermediate, endogenous
behavior of interest. This complete mediation or exclusion re-
striction can be stated as follows. Define the potential outcomes
for Yi and Di as functions of the encouragement and the behavior,
Yi :D×Z→Y and Di :Z→D.
Assumption 1. (Exclusion restriction). Suppose Yiðdi, ziÞ=Yiðdi, zi′Þ
for all di ∈D and zi, zi′∈Z, so we can uniquely define YiðdiÞ.
[Combining this assumption with the random assignment of Zi,

some authors (e.g., ref. 33), write YiðdiÞ,DiðziÞ╨Zi for all di ∈D

and zi,Zi ∈Z. The exclusion restriction is then combined
with either parametric assumptions about Yið·Þ or nonparametric
assumptions about Dið·Þ to identify effects of Di on Yi (34, 35);
both are discussed in Model. Here and elsewhere, we use capital
letters for random variables and lowercase letters for fixed values.
We retain subscripts for units even in the latter case, as those
without subscripts denote n vectors.

Encouragement Designs in Groups and Networks. Peer encourage-
ment designs randomize an individual’s peers to conditions that
increase or decrease the probability of those peers performing a
specific behavior. One may then examine how this shock to peer
behaviors “spills over” to the behaviors of focal individuals.
Furthermore, these designs can provide point estimates of the
effect of peer behavior on ego behavior (i.e., peer effects) by
using encouragements to a specific behavior and assuming that
the only effect of peer assignment to these encouragements on
ego behavior is via that specific peer behavior. The causal DAG
in Fig. 1B illustrates a peer encouragement design with binary
encouragements, peer behaviors, and ego behavior. In this ex-
ample, the encouragement causes one peer to adopt the specific
behavior, which in turn causes the ego to adopt. Given the as-
sumptions encoded in this DAG, peer encouragement is an IV,
and we can estimate the effect of the behavior of peers, as caused
by the encouragement to adopt, on ego behavior.

Plausibility of the Exclusion Restriction. This DAG encodes an ex-
clusion restriction (Assumption 1): All effects of the peer
encouragement on ego behavior occur via changes to peer
behavior. In standard encouragement designs, the randomized
encouragement Zi, endogenous behavior Di, and outcome Yi are
all defined as direct interventions on or measurements of the
same individual, often making this assumption implausible be-
cause the encouragement may affect that individual in many ways
(30, 36, 37). For example, parents encouraged to watch Sesame
Street with their children (31) may modify their child-rearing in
many ways. In peer encouragement designs, however, the exclu-
sion restriction assumption is often particularly plausible for a
structural reason: For a given ego whose outcome is observed, the
encouragement is applied to other units—their peers. The ego
usually does not directly observe or experience the encourage-
ment; instead, it only affects the ego through peer behavior and,
the researcher hopes to ensure, primarily through a small number
of measured peer behaviors. We make the following two design
recommendations—implemented in our empirical example—that
can increase the plausibility of the exclusion restriction and in-
crease statistical power.
First, provided the sample is sufficiently large, selecting a peer

encouragement that is minimal may reduce the potential for
reactance; we illustrate this point by comparison. Many designs
that randomly assign treatment and estimate “spillovers” (i.e.,
interference or exogenous peer effects) (38, 39) can be un-
derstood and analyzed as peer encouragement designs. Recent
work by economists and political scientists has examined such spill-
over effects within groups (40–44) or in a social network (45–47). In
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All mechanisms enabled

All mechanisms disabled

Z-i W-i

Yi

Z-i W-i

Yi

Encourage all peers

Encourage no peers

A B

Fig. 1. Mechanism designs and peer encouragement designs for estimating
peer effects, illustrated with binary variables. W−i indicate peers’ behaviors,
and Yi represent the behavior of a focal individual (ego). Variables are col-
ored to represent example values under different random assignments (red = 1,
gray = 0). (A) Mechanism designs modulate a channel by which peer effects
occur, for example, by randomly enabling or disabling (E−i,i) a particular
mechanism (M−i,i) by which a focal individual (i) is exposed to peer behavior
(−i). (B) Peer encouragement designs use randomized encouragements to peers
(Z−i). All variables represented by circles may have other common causes not
shown. Variables represented by squares are root nodes and are determined by
random assignment.
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some cases, researchers have attributed the estimated spillovers from
treatment assignment to a specific peer behavior: In one study (41),
employees were randomly assigned to encouragements to attend a
retirement benefits fair. Among other analyses, Duflo and Saez (41)
attribute spillover effects on retirement plan enrollment to effects of
peer attendance at the fair. However, as the authors note, this en-
couragement may have directly affected always-attenders [e.g., via
self-perception or crowd-out effects (48)], never-attenders (e.g., via
salience of benefits), and their peers (e.g., via increased discussion
of benefits). If, instead, the encouragement was unlikely to be re-
membered or even consciously perceived as an inducement, perhaps
such violations of the exclusion restriction would be less likely to
occur. Thus, peer encouragement designs could provide more
credible peer effect estimates if the encouragement is a minimal
“nudge” that may not warrant much conscious consideration.
A second design recommendation is, when appropriate for the

research question, to use encouragements that are specific to
particular directed edges, rather than encouraging a general, un-
directed behavior in peers. The experiments mentioned above
generally use the number or fraction of assigned peers as the in-
strument. This instrument is then necessarily correlated for all
egos in the same group or, more generally, who share peers. On
the other hand, it is sometimes possible to encourage directed
behaviors on particular edges; that is, an encouragement that in-
duces a behavior from an alter j to an ego i. Such an encourage-
ment could be randomly assigned at the level of the directed edge,
or at the level of the target (i.e., the ego). In the latter ego-specific
design, an ego i is randomly assigned to a peer encouragement
condition Zi, according to which all edges from any alter j to ego i
are treated. That is, egos are randomly assigned to conditions that
encourage their peers to engage in directed behaviors toward
them; those same peers might be assigned to a different condition
with respect to their other peers. In this ego-specific design, the
instrument is no longer correlated within groups or in the net-
work. This design choice can substantially change power; simula-
tions on small-world networks demonstrate the ego-specific design
reducing true SEs by 20% to over 90% (SI Appendix, Simulations
with Ego-Specific and General Designs). Here we report on a large
experiment in which the peer encouragement is a minimal change
that causes a specific behavior directed at a particular ego.

Empirical Context and Data
Our empirical study examines the effects of receiving feedback
from peers on Facebook. In particular, we examine feedback on
socially shared content (posts) such as text, photos, videos, and
links shared by egos. This content appears in the News Feeds of
peers (friends), who may, in turn, provide feedback on these
posts by providing comments on the post or clicking on the
“Like” button. Individuals who receive feedback on a post may
receive notifications immediately on Facebook, or via mobile
notifications or email.
The design of a feedback interface poses a complex tradeoff:

An interface that causes an ego’s post to occupy more space in
their peers’ News Feeds may increase the likelihood that peers
will provide feedback on the post; at the same time, such an
interface may cut into peers’ limited time and attention to view
and interact with others’ posts. To choose among interfaces,
Facebook product teams frequently randomly assign some users
to receive an alternative (often new) version of an interface to
evaluate these alternatives; the data presented here arise from
one such trial. In particular, we implemented a peer encour-
agement design that enables estimating the effects of receiving
feedback when sharing content in social media.
Peers’ responses to an ego’s content (i.e., liking and com-

menting) are expected to vary with the user interface associated
with that content when seen by peers. Egos were randomly
assigned to conditions that encouraged their peers to provide feed-
back under different circumstances. There were two experimental

factors that independently governed the display of egos’ posts in
peers’ News Feeds (Fig. 2). First, the “encourage initiation”
factor was relevant for posts without any feedback, and it de-
termined whether the viewer would need to click “Comment” to
display the textbox in which to write a comment or whether this
textbox would be already visible. Second, the “conversation sa-
lience” factor was relevant for posts that had already received
feedback, and it determined whether this existing feedback
would be summarized numerically and displayed after a click
or would already be visible (up to three comments shown by
default). Thus, the encourage initiation factor should primarily
cause the first feedback to occur at all or earlier, whereas the
conversation salience factor should cause additional feedback.
There were six possible conditions egos could be assigned to,
resulting in a three (encourage initiation: always, sometimes,
never) by two (conversation salience: high, low) design. (For the
encourage initiation factor, the level sometimes was the default
interface at the time: Posts displayed in the first position in News
Feed would have the textbox shown, but posts appearing in other
positions would not.)
This experiment thus is a peer encouragement design in which

directed edges are treated according to an ego-specific random as-
signment: A particular person viewing their News Feed could see
posts from multiple egos, which would be displayed according to the
conditions to which each of those egos were assigned. We use this
experiment to examine the effects of receiving feedback on how many
posts egos make and how much feedback they give on others’ posts.
To establish a baseline for comparing effect sizes, we also estimate
effects on how much they respond to feedback on their own posts.
Feedback received is measured as the mean daily number of com-
ments and likes received during the experimental period. All analysis
is of deidentified data primarily consisting of counts of behaviors.

Model
For the main analysis, we work with log-transformations of
the count variables (see SI Appendix, Transformed and Un-
transformed Count Variables). Let Di be the logarithm of feed-
back received (likes and comments) by i during the experimental
period and Yi be the logarithm of one of the ego behaviors of in-
terest. We aim to estimate effects of Di on Yi by using the random
variation in Di caused by assignment to the peer encouragement,
Zi. That is, we aim to summarize contrasts between potential

Ego Name

Text (or other content) of post
...
...

Like    Comment                           59 minutes ago

Ego
Photo

Write a comment...
Viewer 
Photo

Comment
textbox

Prev. 
Commenter 
Photo

Prev. Commenter Name Comment text

57 minutes ago      Like

5 people like this.
Existing

feedback

5 1

Feedback summary

Fig. 2. Illustration of the feedback interfaces that would be used to display
an ego’s post to their peers according to which condition the ego was ran-
domly assigned. For posts with feedback, the conversation salience factor
determines whether the feedback is summarized numerically (red) or, in-
stead, the existing feedback is shown (orange) with a textbox for writing a
new comment (blue). In the low-salience case, a click on “Comment” or the
feedback summary would display the existing feedback and comment
textbox. For posts without feedback, the encourage initiation factor deter-
mines whether the comment textbox is shown by default (blue) or whether a
click on “Comment” is needed to display it.
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outcomes for different levels of feedback received, for example,
some summary of YiðdiÞ−Yiðdi′Þ. Writing i’s potential outcomes
as functions only of the ith elements of an n-vector of feedback
received requires two assumptions that specify the potential
outcomes are constant in some inputs (i.e., specify level sets).
First, this requires the exclusion restriction for IVs (Assumption
1). The minimal nature of the encouragement makes it plausible
that it only affects egos by causing them to receive additional
feedback; however, there may be effects of the feedback not
captured by its quantity (e.g., content of comments, timing).
Additionally, already in writing Yiðdi, ziÞ, we assume that the be-

haviors and assignments of all other units can be safely ignored—a
“no interference” (49) or “individualistic treatment response”
(50) assumption.
Assumption 2. (No interference). Suppose that Yiðdi, d−i, zi, z−iÞ=
Yiðdi, d−i′ , zi, z−i′ Þ for all d, d′∈Dn, z, z′∈Zn so that we can uniquely
define Yiðdi, ziÞ.
This assumption is expected to be violated in this setting, even in

our finite population. First, the units are interacting and make up a
substantial portion of a single network. Second, the peer encour-
agement conditions would have different effects under a different
global policy such that, e.g., peers were seeing all posts displayed
according to the same interface rule. However, methods for sta-
tistical and causal inference in the presence of interference remain
somewhat underdeveloped, especially for interference in a single
network rather than within many isolated groups. We therefore
work with the assumption that relevant nuisance interference is
small compared with the effects of interest. For example, consider
the assumption that this nuisance interference is no larger than
than the effect of an increase c to feedback received.
Assumption 3. (Direct-effect-bounded interference). Suppose that

jYiðdi, d−i, zi, z−iÞ−Yiðdi, d−i′ , zi, z−i′ Þj≤ jYiðdi″+ c, d−i″ , zi″, z−i″ Þ
−Yiðdi″, d−i″ , zi″, z−i″ Þj

for all d, d′, d″∈Dn, z, z′, z″∈Zn.
If, as in our main analysis, feedback received is modeled on a

log scale, then, for c= 1, this assumes that any interference is
smaller than the effect of multiplying feedback received by e (i.e.,
increasing feedback received by 172%); thus, sensitivity analysis
based on such an assumption allows for very substantial in-
terference. In SI Appendix, we combine this assumption with a
specific model of local interference (50, 51) to conduct analyses
quantifying the sensitivity of our results to nuisance interference.
For simplicity, we now proceed with a model without nuisance
interference.
In addition to Assumptions 1 and 2, there are multiple sets of

assumptions that allow identification and estimation using peer en-
couragement conditions as IVs. One such assumption is that the
effects of feedback received are (log–log) linear and constant; that is,

YiðdiÞ−Yið0Þ= γdi.

In this case, two-stage least squares (TSLS) with multiple
instruments simply increases precision in estimating γ; because
both Yi and Di are on a logarithmic scale, γ is approximately the
effect of a 1% increase in Di in terms of percent change in Yi. To
estimate γ, we estimate the following two regression equations
using TSLS:

Y =Xμ+ γD+ «i

D=Xα+Zβ+ ηi

where X= ½S  C� is a sparse n× 80,065 matrix of (i) binary indi-
cators for 64 strata formed by the quartiles of preexperiment

feedback received, number of peers active on the web interface
to Facebook, and preexperiment posting and (ii) binary indica-
tors for 80,001 network clusters formed by graph partitioning,
and Z is an n× k matrix of instruments, which are each binary
indicators derived from the peer encouragement factors.
We expect the effects of feedback to be somewhat hetero-

geneous. “Marginal feedback,” feedback that occurs (or does
not occur) because of small changes, may be different from
other feedback. Additionally, there may be heterogeneous ef-
fects of marginal feedback. For these reasons, we could adopt a
nonparametric assumption on Dið·Þ rather than a parametric
assumption on Yið·Þ: Each encouragement does not reduce
feedback received for any egos.
Assumption 4. (Monotonicity). Define hð·Þ :Z→ f1, . . . , kg to or-
der the k values in Z such that j< l implies E½DijhðZiÞ= j�<
E½DijhðZiÞ= l�. With probability 1,DiðziÞ−Diðzi′Þ≥ 0 for all i∈Pegos,
where hðziÞ> hðzi′Þ.
Then TSLS using binary indicators formed from the levels of

hðZiÞ estimates a weighted average of estimators using a single
binary indicator (ref. 33, theorem 2), each of which estimates an
average causal response (ACR), which is a weighted average
of effects of changes in increments of Di. Because Di = gðDi

pÞ is
transformed from its original, skewed count distribution, this
means that the weights for a change to gðdipÞ from gðdip − 1Þ in
this average are the normalized product of a difference in cu-
mulative distribution functions for Di at gðdip − 1Þ for that in-
strument and gðdipÞ− gðdip − 1Þ; see SI Appendix, Transformed
and Untransformed Count Variables. Our main results use a first
stage without interactions between the two factors, so this
simple theorem does not directly apply to that model. However,
Lochner and Moretti (ref. 52, proposition 2) show that TSLS
nonetheless estimates a weighted average of the single in-
strument estimands. This weighting function is shown in SI
Appendix, Fig. S7. We test the choice of this first-stage model
and show in Fig. 4 that the results are not affected by instead
using data-driven shrinkage and selection with the lasso.

Results
We first examine the effects of the peer encouragements on
feedback received (i.e., first-stage effects). Both encouragement
factors cause peers to comment on and like posts by egos, such
that these factors increase (geometric) mean feedback received by
0.2–1.3% (Fig. 3A), Fð3, 4.9e7Þ= 519,   p< 1e-12. Adding the two
interaction terms for these factors did not significantly improve fit,
Fð2, 4.9e7Þ= 0.23,   p= 0.80. As expected, the encourage initiation
factor shifts the lower end of the distribution of feedback received
more, compared with the conversation salience factor (Fig. 3B).
This randomly induced variation in feedback received allows

us to estimate effects of receiving feedback on multiple ego be-
haviors. We focus on results from a first-stage specification as in
Fig. 3A, with all three main effects (black points in Fig. 4).
Receiving additional feedback is expected to have the largest

effects on “reply” behaviors by the ego, such as commenting on
their own posts and liking comments on their posts. We estimate
large effects of receiving feedback on both of these ego behav-
iors, such that a 10% increase in feedback received causes a
9.6% increase in comments (self) and a 10.5% increase in likes
(self). Although unsurprising, these estimates can help put the
magnitude of effects on other ego behaviors in perspective.
Effects on other ego behaviors are more important for un-

derstanding the spread of feedback and sharing behaviors. Re-
ceiving additional feedback also causes egos to give others more
feedback, in terms of both likes and comments separately: Re-
ceiving 10% more feedback causes egos to give others 1.1%
more likes and 1.1% more comments. Thus, causing one indi-
vidual to receive more feedback will cause them to give more
feedback to their peers, potentially creating desirable feedback
loops. As expected, these effects are substantially smaller than
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on the reply behaviors, but are less than an order of magnitude
smaller. Furthermore, when egos receive more feedback, they
also share more new posts during the experiment: A 10% in-
crease in feedback causes a 0.7% increase in creating new posts.
We also computed estimates with other first-stage specifi-

cations: only the conversation salience factor, only the two en-
courage initiation factors, and a high-dimensional specification.
Specifically, to potentially use heterogeneity in the true first-stage
model, we fit a lasso (i.e., L1 penalized) first-stage model (53, 54)
with both factors, interactions, and interactions with the stratum-
defining variables, with the selected model having 23 nonzero
coefficients. The results (Fig. 4) for feedback to peers and posting
are statistically indistinguishable for all four models, whereas the
two single-factor models differ for effects on the reply behaviors.

Comparison with Observational Estimates. In the absence of this
peer encouragement design, scientists and decision makers could
instead rely on observational data to study the effects of receiving
feedback (10, 55). We thus evaluate how observational estimates
compare with our experimental results. We regress each of the
ego outcomes on observed feedback received, adjusting for strata

and network clusters, as in the IV analysis, but ignoring assign-
ment to peer encouragement conditions. (This analysis includes
some variation in feedback received caused by the experiment, but
this is a very small fraction of the variance, and it does not ma-
terially affect the results.) For all outcomes, these observational
estimates of the effect of receiving feedback are substantially
different from IV estimates from the peer encouragement design
(Fig. 5). For the main outcomes of interest (posting and feedback
to others), the observational coefficient estimates are 317–498%
larger. On the other hand, they appear to underestimate reply
behaviors by 36% and 68% for comments and likes, respectively.
That is, in contrast to claims that observational estimates can
upper bound true peer effects (6), the sign of the implied large-
sample bias of the observational estimators varies across out-
comes. These differences could be attributed to confounding,
simultaneity, or the fact that IV and observational analyses often
estimate different causal quantities (52).

Robustness to Dependence and Nuisance Interference. The preced-
ing inferential results use a network adjacency- and cluster-robust
estimator of the variance–covariance matrix (56, 57) to compute
SEs; see SI Appendix, Randomization Inference with Sensitivity
Analysis. To further examine the robustness of the results to nui-
sance interference, we used Fisherian randomization inference for
the effect of feedback received on posting (which was the least
statistically significant with p= 0.0013), while allowing for in-
ference according to Assumption 3 with c= 1 under a model
whereby an ego’s outcome depends the assignments of their
peers. This estimate remained statistically significant in the
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Fig. 3. Effects of the encouragements on feedback received (first stage).
(A) First-stage average effects. Points are coefficient estimates for the effects
of the conversation salience (circle) and encourage initiation (triangles)
factors on (log) feedback received, where the base condition is low con-
versation salience and never encourage initiation. Error bars are 95% net-
work adjacency- and cluster-robust confidence intervals. (B) Effects on the
distribution of feedback received, computed as a difference in the empirical
cumulative distribution functions (ECDFs) of feedback received. Again, with
the lowest-feedback condition (never/low) as the baseline, each line repre-
sents the difference in probability that daily feedback received is at least the
value on the x axis. The encourage initiation factor, which has its immediate
effects only when a post has no feedback, has larger effects at the low end
of the feedback distribution, whereas the conversation salience factor pro-
duces shifts at the high end. These differences use poststratification on
quartiles of prior feedback received.
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displays these results in tabular form.
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presence of additive interference (maximum p= 0.012) or in-
teractive interference (maximum p= 0.017) from peers; most of
this difference in inference arises from the use of randomization
inference with the rank sum test statistic, rather than allowing for
interference per se (without interference, p= 0.009).

Discussion
Peer encouragement designs can be an effective strategy for esti-
mating peer effects in networks: By randomly encouraging peers
to specific behaviors, researchers can learn about the effects of
those behaviors on egos. In this paper, we reviewed this class of
experimental designs and demonstrated the potential to use a
minimal encouragement (here, a small change to the user in-
terface for giving feedback) to an ego-specific behavior. We
found that receiving additional feedback causes individuals to
give feedback to others and to share new posts. Compared with
direct reply behaviors, these effects are smaller but still very
substantial. This provides new evidence for the influence of peer
effects in the use of communication technologies. It also informs
our understanding of the value of social feedback to its recipi-
ents, as reflected in recipients’ decisions to continue using a
medium. In particular, receiving more feedback causes individ-
uals to more frequently repeat the same behavior (posting con-
tent) that made them able to receive feedback in the first place.
These results are informative about the role of directed behav-
iors in the adoption of technologies that enable both undirected
(broadcast) and directed communications.
One limitation of this experiment is that it does not elucidate

the mechanisms by which receiving feedback affects egos or
distinguish different types of feedback. The observed effects are
expected to occur for many reasons. For example, effects on giving
feedback to others could be due to a psychological response (e.g.,
generalized reciprocity), or occur simply because receiving feed-
back causes users to return to Facebook more often, and therefore
creates more opportunities to comment on peers’ posts. Dis-
tinguishing these and other mechanisms would be difficult, but
additional studies could test alternative explanations. For sim-
plicity, we have focused on an experiment that identifies un-
differentiated effects of feedback. Additional peer encouragement
designs could also distinguish among different types of feedback.
A peer encouragement design identifies an encouragement-

specific quantity: the effect of receiving additional feedback for
egos’ whose peers are induced by the encouragement to provide

more feedback. This quantity is an ACR, the generalization of a
local average treatment effect (LATE) for a multivalued treat-
ment, or a weighted combination of ACRs. In this study, these
are weighted average effects of feedback that would occur (or
not) depending on small changes to the user interface. The
conventional wisdom (cf. refs. 58–60) is that a LATE or ACR is
less relevant than quantities that average over other, larger sets
of potential outcomes, such as an average treatment effect or
ATT. We argue that an ACR, in fact, averages over differences
in peer behavior that are realistic under many relevant alterna-
tive policies. Researchers, marketers, or policy makers may be
particularly interested in the average effects of incremental peer
behaviors—behaviors that will occur or not depending on re-
alistic changes to the environment, policy, or marketing cam-
paign. In some standard economic models, the LATE is a
piecewise constant approximation to this marginal treatment
effect (61). Thus, if design, policy, or marketing decisions are
expected to produce shifts in peer behaviors similar to the en-
couragement design, then the LATE or ACR may be of greater
substantive relevance (cf. ref. 62). Of course, even different en-
couragements might define quite different ACRs. This experi-
ment included two different peer encouragements that are
expected to cause feedback at different times in the lifecycle of
an ego’s post: The encourage initiation factor should primarily
cause the first feedback to occur at all or earlier, and the con-
versation salience factor should generate additional feedback on
posts with existing feedback. We find that, despite this differ-
ence, these two factors identify quite similar ACRs, especially for
the primary outcomes (SI Appendix, Fig. S8). This could increase
our confidence that the present results may be informative about
other attempts to cause people to receive more feedback on their
posts. In this particular case, it is unclear what other averages
would be preferable, because the natural generalization of the
ATT to a multivalued variable like feedback received would
average over contrasts comparing outcomes when egos receive
their status quo levels of feedback and if they were to receive
no feedback [i.e., YiðDiÞ−Yið0Þ]. This thus includes contrasts in
which very active, high-degree egos who currently receive large
amounts of feedback receive none, which is perhaps unlikely to
occur under policies being considered.
The current work highlights the advantages of large data sets

and novel experimental designs for causal inference about how
people affect each other. Our peer encouragement design pro-
vides credible causal estimates for the effects of receiving social
feedback on Facebook; this is, to our knowledge, the first ex-
perimental evidence for these effects. The plausibility of a key
assumption in our model, the exclusion restriction, partly de-
pends on encouragements being minimal. However, encourage-
ments that produce minimal variation can result in imprecise IV
estimates; even studies with hundreds of thousands of observa-
tions will often suffer from the instruments being too weak (63).
Peer encouragement designs with such minimal encouragements
thus require a very large sample size and careful design (e.g., the
ego-specific design used here) to estimate peer effects pre-
cisely. When feasible, however, peer encouragement designs
can provide valuable insights into real-world social dynamics
that can inform social science and policy decisions.

Materials and Methods
The peer encouragement design ran for 3 wk between September and
October 2012. The egos in the data analyzed are 48.9 million Facebook users
globally who had created at least one status update in the 4 d before the start
of the experiment or during the experiment, who had at least one friend
frequently using Facebook via the web interface, and who reported their age
as at least 18. Note that 52% of these egos are randomly assigned to the peer
encouragement condition reflecting the status quo at the time. Approxi-
mately 905 million Facebook users were peers of the egos and used the web
interface. Further details about the sample and covariate balance are
reported in SI Appendix, Table S1. The primary results we report are adjusted
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with a set of sparse binary covariates (i.e., dummies) for quartiles of three
pretreatment variables (forming 43 = 64 strata) and 80,001 clusters formed
by graph partitioning (see SI Appendix).

This study uses data from an experiment conducted for routine product
improvement purposes and that posed nomore thanminimal risk. D.E. and E.B.
designed and conducted the experiment as part of product development
while employees of Facebook in 2012. Research using this data is consistent
with the Data Policy that people accept when they choose to use the
Facebook service. Accordingly, we did not separately notify users of this
specific product test, nor did we obtain written informed consent. R.F.K. later
contributed to this research using this existing data while an employee of
Facebook in 2014 and 2015. Because he intended to use his university

affiliation in reports on this study, R.F.K. asked the Stanford University in-
stitutional review board (IRB) to review a protocol for use of this previously
collected anonymized data; the Stanford IRB approved this protocol. Similarly,
whenD.E. became amember of theMassachusetts Institute of Technology (MIT)
faculty in 2015, theMIT IRB determined that a protocol for use of this previously
collected anonymized data was exempt, and approved the protocol.
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