1,569 research outputs found

    Quantum circuit for security proof of quantum key distribution without encryption of error syndrome and noisy processing

    Full text link
    One of the simplest security proofs of quantum key distribution is based on the so-called complementarity scenario, which involves the complementarity control of an actual protocol and a virtual protocol [M. Koashi, e-print arXiv:0704.3661 (2007)]. The existing virtual protocol has a limitation in classical postprocessing, i.e., the syndrome for the error-correction step has to be encrypted. In this paper, we remove this limitation by constructing a quantum circuit for the virtual protocol. Moreover, our circuit with a shield system gives an intuitive proof of why adding noise to the sifted key increases the bit error rate threshold in the general case in which one of the parties does not possess a qubit. Thus, our circuit bridges the simple proof and the use of wider classes of classical postprocessing.Comment: 8 pages, 2 figures. Typo correcte

    Unconditionally secure key distillation from multi-photons

    Full text link
    In this paper, we prove that the unconditionally secure key can be surprisingly extracted from {\it multi}-photon emission part in the photon polarization-based QKD. One example is shown by explicitly proving that one can indeed generate an unconditionally secure key from Alice's two-photon emission part in ``Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulses implementations'' proposed by V. Scarani {\it et al.,} in Phys. Rev. Lett. {\bf 92}, 057901 (2004), which is called SARG04. This protocol uses the same four states as in BB84 and differs only in the classical post-processing protocol. It is, thus, interesting to see how the classical post-processing of quantum key distribution might qualitatively change its security. We also show that one can generate an unconditionally secure key from the single to the four-photon part in a generalized SARG04 that uses six states. Finally, we also compare the bit error rate threshold of these protocols with the one in BB84 and the original six-state protocol assuming a depolarizing channel.Comment: The title has changed again. We considerably improved our presentation, and furthermore we proposed & analyzed a security of a modified SARG04 protocol, which uses six state

    Roles of the tensor and pairing correlations on the halo formation in 11Li

    Full text link
    We study the roles of the tensor and pairing correlations on the halo formation in 11Li with an extended 9Li+n+n model. We first solve the ground state of 9Li in the shell model basis by taking 2p-2h states using the Gaussian functions with variational size parameters to take into account the tensor correlation fully. In 11Li, the tensor and pairing correlations in 9Li are Pauli-blocked by additional two neutrons, which work coherently to make the configurations containing the 0p1/2 state pushed up and close to those containing the 1s1/2 state. Hence, the pairing interaction works efficiently to mix the two configurations by equal amount and develop the halo structure in 11Li. For 10Li, the inversion phenomenon of s- and p-states is reproduced in the same framework. Our model furthermore explains the recently observed Coulomb breakup strength and charge radius for 11Li.Comment: 8 pages, 5 figure

    Unconditionally Secure Key Distribution Based on Two Nonorthogonal States

    Full text link
    We prove the unconditional security of the Bennett 1992 protocol, by using a reduction to an entanglement distillation protocol initiated by a local filtering process. The bit errors and the phase errors are correlated after the filtering, and we can bound the amount of phase errors from the observed bit errors by an estimation method involving nonorthogonal measurements. The angle between the two states shows a trade-off between accuracy of the estimation and robustness to noises.Comment: 5 pages, 1 figur

    High Metallicity of the X-Ray Gas up to the Virial Radius of a Binary Cluster of Galaxies: Evidence of Galactic Superwinds at High-Redshift

    Full text link
    We present an analysis of a Suzaku observation of the link region between the galaxy clusters A399 and A401. We obtained the metallicity of the intracluster medium (ICM) up to the cluster virial radii for the first time. We determine the metallicity where the virial radii of the two clusters cross each other (~2 Mpc away from their centers) and found that it is comparable to that in their inner regions (~0.2 Zsun). It is unlikely that the uniformity of metallicity up to the virial radii is due to mixing caused by a cluster collision. Since the ram-pressure is too small to strip the interstellar medium of galaxies around the virial radius of a cluster, the fairly high metallicity that we found there indicates that the metals in the ICM are not transported from member galaxies by ram-pressure stripping. Instead, the uniformity suggests that the proto-cluster region was extensively polluted with metals by extremely powerful outflows (superwinds) from galaxies before the clusters formed. We also searched for the oxygen emission from the warm--hot intergalactic medium in that region and obtained a strict upper limit of the hydrogen density (nH<4.1x10^-5 cm^-3).Comment: Typo corrected. The published version is available on-line free of charge by the end of 2008. http://pasj.asj.or.jp/v60/sp1/60s133/60s133.pd

    On the performance of two protocols: SARG04 and BB84

    Full text link
    We compare the performance of BB84 and SARG04, the later of which was proposed by V. Scarani et al., in Phys. Rev. Lett. 92, 057901 (2004). Specifically, in this paper, we investigate SARG04 with two-way classical communications and SARG04 with decoy states. In the first part of the paper, we show that SARG04 with two-way communications can tolerate a higher bit error rate (19.4% for a one-photon source and 6.56% for a two-photon source) than SARG04 with one-way communications (10.95% for a one-photon source and 2.71% for a two-photon source). Also, the upper bounds on the bit error rate for SARG04 with two-way communications are computed in a closed form by considering an individual attack based on a general measurement. In the second part of the paper, we propose employing the idea of decoy states in SARG04 to obtain unconditional security even when realistic devices are used. We compare the performance of SARG04 with decoy states and BB84 with decoy states. We find that the optimal mean-photon number for SARG04 is higher than that of BB84 when the bit error rate is small. Also, we observe that SARG04 does not achieve a longer secure distance and a higher key generation rate than BB84, assuming a typical experimental parameter set.Comment: 48 pages, 10 figures, 1 column, changed Figs. 7 and

    Heat conduction induced by non-Gaussian athermal fluctuations

    Full text link
    We study the properties of heat conduction induced by non-Gaussian noises from athermal environments. We find that new terms should be added to the conventional Fourier law and the fluctuation theorem for the heat current, where its average and fluctuation are determined not only by the noise intensities but also by the non-Gaussian nature of the noises. Our results explicitly show the absence of the zeroth law of thermodynamics in athermal systems.Comment: 15 pages, 4 figures, PRE in pres

    Large-Scale Wind-Tunnel Tests and Evaluation of the Low-Speed Performance of a 35 deg Sweptback Wing Jet Transport Model Equipped with a Blowing Boundary-Layer-Control Flap and Leading-Edge Slat

    Get PDF
    A wind-tunnel investigation was conducted to determine the effect of trailing-edge flaps with blowing-type boundary-layer control and leading-edge slats on the low-speed performance of a large-scale jet transport model with four engines and a 35 deg. sweptback wing of aspect ratio 7. Two spanwise extents and several deflections of the trailing-edge flap were tested. Results were obtained with a normal leading-edge and with full-span leading-edge slats. Three-component longitudinal force and moment data and boundary-layer-control flow requirements are presented. The test results are analyzed in terms of possible improvements in low-speed performance. The effect on performance of the source of boundary-layer-control air flow is considered in the analysis

    Unconditional security of the Bennett 1992 quantum key-distribution scheme with strong reference pulse

    Full text link
    We prove the unconditional security of the original Bennett 1992 protocol with strong reference pulse. We show that we may place a projection onto suitably defined qubit spaces before the receiver, which makes the analysis as simple as qubit-based protocols. Unlike the single-photon-based qubits, the qubits identified in this scheme are almost surely detected by the receiver even after a lossy channel. This leads to the key generation rate that is proportional to the channel transmission rate for proper choices of experimental parameters.Comment: More detailed presentation and a bit modified security proo
    • …
    corecore