20 research outputs found

    High-Resolution Imaging of Patients with Bietti Crystalline Dystrophy with CYP4V2

    Get PDF
    The purpose of this study was to determine the retinal morphology of eyes with Bietti crystalline dystrophy (BCD) associated with a CYP4V2 mutation using high-resolution imaging techniques. Three subjects with BCD underwent detailed ophthalmic examinations. High-resolution fundus images were obtained with an adaptive optics (AO) fundus camera. A common homozygous mutation was detected in the three patients. Funduscopic examination of the three patients revealed the presence of crystalline deposits in the retina, and all of the crystalline deposits were also detected in the infrared (IR) images. The crystals observed in the IR images were seen as bright reflective plaques located on the RPE layer in the SD-OCT images. The clusters of hyperreflective signals in the AO images corresponded to the crystals in the IR images. High-magnification AO images revealed that the clusters of hyperreflective signals consisted of circular spots that are similar to the signals of cone photoreceptors. Most of these circular spots were detected in healthy areas in the FAF images. There is a possibility that circular spots observed by AO are residual cone photoreceptors located over the crystals

    Detection of capillary abnormalities in early diabetic retinopathy using scanning laser ophthalmoscopy and optical coherence tomography combined with adaptive optics

    Get PDF
    This study tested if a high-resolution, multi-modal, multi-scale retinal imaging instrument can provide novel information about structural abnormalities in vivo. The study examined 11 patients with very mild to moderate non-proliferative diabetic retinopathy (NPDR) and 10 healthy subjects using fundus photography, optical coherence tomography (OCT), OCT angiography (OCTA), adaptive optics scanning laser ophthalmoscopy (AO-SLO), adaptive optics OCT and OCTA (AO-OCT(A)). Of 21 eyes of 11 patients, 11 had very mild NPDR, 8 had mild NPDR, 2 had moderate NPDR, and 1 had no retinopathy. Using AO-SLO, capillary looping, inflections and dilations were detected in 8 patients with very mild or mild NPDR, and microaneurysms containing hyperreflective granular elements were visible in 9 patients with mild or moderate NPDR. Most of the abnormalities were seen to be perfused in the corresponding OCTA scans while a few capillary loops appeared to be occluded or perfused at a non-detectable flow rate, possibly because of hypoperfusion. In one patient with moderate NPDR, non-perfused capillaries, also called ghost vessels, were identified by alignment of corresponding en face AO-OCT and AO-OCTA images. The combination of multiple non-invasive imaging methods could identify prominent microscopic abnormalities in diabetic retinopathy earlier and more detailed than conventional fundus imaging devices.</p

    Detailed Morphological Changes of Foveoschisis in Patient with X-Linked Retinoschisis Detected by SD-OCT and Adaptive Optics Fundus Camera

    No full text
    Purpose. To report the morphological and functional changes associated with a regression of foveoschisis in a patient with X-linked retinoschisis (XLRS). Methods. A 42-year-old man with XLRS underwent genetic analysis and detailed ophthalmic examinations. Functional assessments included best-corrected visual acuity (BCVA), full-field electroretinograms (ERGs), and multifocal ERGs (mfERGs). Morphological assessments included fundus photography, spectral-domain optical coherence tomography (SD-OCT), and adaptive optics (AO) fundus imaging. After the baseline clinical data were obtained, topical dorzolamide was applied to the patient. The patient was followed for 24 months. Results. A reported RS1 gene mutation was found (P203L) in the patient. At the baseline, his decimal BCVA was 0.15 in the right and 0.3 in the left eye. Fundus photographs showed bilateral spoke wheel-appearing maculopathy. SD-OCT confirmed the foveoschisis in the left eye. The AO images of the left eye showed spoke wheel retinal folds, and the folds were thinner than those in fundus photographs. During the follow-up period, the foveal thickness in the SD-OCT images and the number of retinal folds in the AO images were reduced. Conclusions. We have presented the detailed morphological changes of foveoschisis in a patient with XLRS detected by SD-OCT and AO fundus camera. However, the findings do not indicate whether the changes were influenced by topical dorzolamide or the natural history

    High-Resolution En Face Images of Microcystic Macular Edema in Patients with Autosomal Dominant Optic Atrophy

    No full text
    The purpose of this study was to investigate the characteristics of microcystic macular edema (MME) determined from the en face images obtained by an adaptive optics (AO) fundus camera in patients with autosomal dominant optic atrophy (ADOA) and to try to determine the mechanisms underlying the degeneration of the inner retinal cells and RNFL by using the advantage of AO. Six patients from 4 families with ADOA underwent detailed ophthalmic examinations including spectral domain optical coherence tomography (SD-OCT). Mutational screening of all coding and flanking intron sequences of the OPA1 gene was performed by DNA sequencing. SD-OCT showed a severe reduction in the retinal nerve fiber layer (RNFL) thickness in all patients. A new splicing defect and two new frameshift mutations with premature termination of the Opa1 protein were identified in three families. A reported nonsense mutation was identified in one family. SD-OCT of one patient showed MME in the inner nuclear layer (INL) of the retina. AO images showed microcysts in the en face images of the INL. Our data indicate that AO is a useful method to identify MME in neurodegenerative diseases and may also help determine the mechanisms underlying the degeneration of the inner retinal cells and RNFL

    Functional and high-resolution retinal imaging monitoring photoreceptor damage in acute macular neuroretinopathy

    No full text
    International audience<p>Background: To report functional and high-resolution retinal imaging abnormalities, including adaptive optics (AO) throughout the course of acute macular neuroretinopathy (AMNR).</p><p></p><p>Methods: Two female patients (four eyes) with a diagnosis of AMNR were observed at the Clinical Investigation Center, CHNO des Quinze-Vingts, Paris, France. The patients underwent detailed ophthalmic examination including best-corrected visual acuity, slit-lamp examination, kinetic and static perimetry, full-field and multifocal electroretinogram, infrared reflectance, autofluorescence imaging and spectral-domain optical coherence tomography (SD-OCT) and AO fundus imaging at presentation and during follow-up.</p><p></p><p>Results: Both cases showed concomitant loss of integrity of the outer retinal structures on SD-OCT, and marked abnormalities on AO imaging with disruption of the visibility of the cone mosaic. In the first case, photoreceptor damage was seen to progress during several weeks before healing. In both cases, there were persistent morphological abnormalities of photoreceptors 1 year after onset.</p><p></p><p>Conclusion: This study further highlights the value of AO fundus imaging to facilitate detection, mapping, and monitoring of damage to the cone outer segments during AMNR. In particular, residual damage to the cone mosaic can be precisely documented.</p

    Functional and high-resolution retinal imaging monitoring photoreceptor damage in acute macular neuroretinopathy

    No full text
    International audience<p>Background: To report functional and high-resolution retinal imaging abnormalities, including adaptive optics (AO) throughout the course of acute macular neuroretinopathy (AMNR).</p><p></p><p>Methods: Two female patients (four eyes) with a diagnosis of AMNR were observed at the Clinical Investigation Center, CHNO des Quinze-Vingts, Paris, France. The patients underwent detailed ophthalmic examination including best-corrected visual acuity, slit-lamp examination, kinetic and static perimetry, full-field and multifocal electroretinogram, infrared reflectance, autofluorescence imaging and spectral-domain optical coherence tomography (SD-OCT) and AO fundus imaging at presentation and during follow-up.</p><p></p><p>Results: Both cases showed concomitant loss of integrity of the outer retinal structures on SD-OCT, and marked abnormalities on AO imaging with disruption of the visibility of the cone mosaic. In the first case, photoreceptor damage was seen to progress during several weeks before healing. In both cases, there were persistent morphological abnormalities of photoreceptors 1 year after onset.</p><p></p><p>Conclusion: This study further highlights the value of AO fundus imaging to facilitate detection, mapping, and monitoring of damage to the cone outer segments during AMNR. In particular, residual damage to the cone mosaic can be precisely documented.</p
    corecore