88 research outputs found

    In situ calibration of the foil detector for an infrared imaging video bolometer using a carbon evaporation technique

    Get PDF
    The InfraRed imaging Video Bolometer (IRVB) is a useful diagnostic for the multi-dimensional measurement of plasma radiation profiles. For the application of IRVB measurement to the neutron environment in fusion plasma devices such as the Large Helical Device (LHD), in situ calibration of the thermal characteristics of the foil detector is required. Laser irradiation tests of sample foils show that the reproducibility and uniformity of the carbon coating for the foil were improved using a vacuum evaporation method. Also, the principle of the in situ calibration system was justified

    Neutron Shielding Design of Infrared Imaging Video Bolometer for LHD Deuterium Experiment

    Get PDF
    InfraRed imaging video bolometer (IRVB) is a powerful diagnostic for the plasma radiation measurement. Study on plasma radiation phenomena, e.g., plasma detachment, is one of the crucial issues to realize a fusion reactor. In order to apply the IRVB to such a study, a shielding is required to protect an IR camera from neutron irradiation. In the large helical device (LHD), deuterium experiment has started in 2017. Then, the shielding was designed using MCNP6 code with the 3-D modeling of LHD. The guideline of the neutron flux for the design was determined by the operational experience in JT-60U tokamak and by the result of the irradiation in OKTAVIAN. The strong neutron flux due to the location close to the vacuum vessel and the influx through the lens hole were reduced sufficiently. The designed shielding was applied to the LHD deuterium experiments and the IRVB with the shielding could be operated successfully without any dead pixels in the neutron emission rate up to 3.3×10 15 n·s -1 , which is the maximum rate in the first experimental campaign and in the total neutron emission of 3.6×10 18 n. These correspond to the neutron emission rate of 2.9×10 7 n·s -1 and the total neutron emission of 3.2 × 10 10 n at around the IR camera

    Improvement of infrared imaging video bolometer for application to deuterium experiment on the large helical device

    Get PDF
    An infrared imaging video bolometer was improved for application to a neutron environment in fusion plasma devices, i.e., the Large Helical Device (LHD). In order to calibrate the thermal characteristics of the activated foil absorber inside the plasma vacuum vessel, the remote-controlled in situ calibration system was improved with high-surface-flatness mirrors. Furthermore, the carbon coating method was improved by introducing a vacuum evaporation technique instead of the conventional spray technique to realize the coating on both sides of the absorber with reproducibility and uniformity. The optimal thickness of the coating was also determined. Owing to these coating improvements, the reproducibility of the effective emissivity on both sides especially was improved. Finally, the variation with the neutron irradiation of the thermal characteristics of the foil absorber was investigated. It was found that the effect was not significant for the total neutron emission of 3.6 × 1018 on LHD

    Consideration of signal to noise ratio for an imaging bolometer for ITER

    Get PDF
    An infrared imaging video bolometer (IRVB) is proposed for ITER having a tangential view of the entire ITER cross section. For the initial estimate of the signal level, a 840 m3 plasma is assumed to uniformly radiate 67.3 MW. A more detailed estimate of the signal strength is provided by synthetic images based on radiation data from SOLPS and SANCO models for the edge and core plasma, respectively. The Pt foil used as the radiation absorber would have the dimensions of 7 × 9 cm2 and a thickness of 16 μm that will stop 95% of the radiated power. Two different InSb based IR cameras having a sensitivity of 15 mK are considered for measuring the temperature rise of the foil due to the radiation. The first has 1280 × 1024 pixel2 and a frame rate of 105 fps. The second has 640 × 512 pixel2 and a frame rate of 1000 fps. The resulting IRVBs have 40 × 30 pixel2, 10 ms time resolution, and a signal to noise ratio (SNR) of 17 and 20 × 15 pixel2, 3 ms time resolution, and a SNR of 35, respectively. The synthetic image data give SNRs of 30 and 59, respectively

    Development of a weighted sum estimate of the total radiated power from large helical device plasma

    Get PDF
    Diagnosing the amount of radiated power is an important research goal for fusion devices. This research aims at better understanding and diagnosing the radiated power from the Large Helical Device (LHD). The current radiated power estimate in the LHD is based on one wide-angle resistive bolometer. Because the estimate stems from one bolometer location toroidally and has a wide-angle poloidal view, this estimate does not take into account toroidal and poloidal radiation asymmetries that are observed in the LHD in discharges with gas puffing. This research develops a method based on the EMC3-Eirene model to calculate the set of coefficients for a weighted-sum method of estimating the radiated power. This study calculates these coefficients by using a least-squares method to solve for a coefficient set, using a variety of simulated cases generated by the EMC3-Eirene model, combined with corresponding geometric radiated power density considerations. If this set of coefficients is multiplied by the detector signal of each bolometer and summed up, this gives a total radiated power estimate. This new estimate takes into account toroidal and poloidal asymmetries by using the bolometer channels viewing different toroidal and poloidal locations, thereby reducing the estimation error and providing information about toroidal asymmetries

    Estimates of foil thickness, signal, noise, and nuclear heating of imaging bolometers for ITER

    Get PDF
    Imaging bolometers have been studied for ITER to serve as a complementary diagnostic to the resistive bolometers for the measurement of radiated power. Two tangentially viewing InfraRed imaging Video Bolometers (IRVB) could be proposed for an ITER equatorial port, one having a view of the entire plasma cross-section (core viewing) and one tilted down 43 degrees from the horizontal to view the divertor (divertor viewing). The IRVBs have 7 cm (horizontal) by 9 cm (vertical) Pt sensor foils, 6 mm × 6 mm apertures, 15 × 20 pixels and focal lengths of 7.8 cm and 21 cm, respectively. Using SANCO and SOLPS models for a 840 m3 plasma radiating 67.3 MW, synthetic images from the IRVBs are calculated to estimate the maximum signal strengths to be 246 W/m2 and 62 W/m2, respectively. We propagate the X-ray energy spectra from the models through the synthetic diagnostics to give the photon energy spectrum for each IRVB pixel, which are used to calculate the fraction of the power absorbed by the foil as a function of foil thickness. Using a criteria of >95% absorbed power fraction, we selected foil thicknesses of 30 μm and 10 μm, respectively. We used these thicknesses and assumed IR systems having 105 fps, 1024×1280 pixels and sensitivities of 15 mK, to calculate the IRVB sensitivities of 3.19 W/m2 and 1.05 W/m2, and signal to noise ratios of 77 and 59, respectively. Using the Monte Carlo Nuclear Particle code we calculated for the core viewing IRVB the foil heating by neutrons to be 1.0 W/m2 and by gammas to be 117 W/m2. This indicates that countermeasures may be needed to remove the nuclear heating signal

    Self-Sustained Divertor Oscillation Driven by Magnetic Island Dynamics in Torus Plasma

    Get PDF
    A new type of self-sustained divertor oscillation is discovered in the Large Helical Device stellarator, where the peripheral plasma is detached from material diverters by means of externally applied perturbation fields. The divertor oscillation is found to be a self-regulation of an isolated magnetic field structure (the magnetic island) width induced by a drastic change in a poloidal inhomogeneity of the plasma radiation across the detachment-attachment transitions. A predator-prey model between the magnetic island width and a self-generated local plasma current (the bootstrap current) is introduced to describe the divertor oscillation, which successfully reproduces the experimental observation

    Sensitivity Improvement of Infrared Imaging Video Bolometer for Divertor Plasma Measurement

    Get PDF
    The sensitivity of an infrared imaging video bolometer (IRVB) was improved for the measurement of relatively low energy plasma radiation from the viewpoint of the metal foil absorber material. The photon energy of the radiation was considered up to 1 keV for the divertor plasma measurement. The thickness of the foil absorber was evaluated not only for conventional heavy elements, e.g., platinum, but also for light elements by the relation between the photon energy and attenuation length and by mechanical strength. A heat-transfer calculation using ANSYS suggested that light elements with practical foil thickness provide a higher temperature rise of the foil absorber compared with heavier elements with practical foil thickness. The maximum of the temperature rise was evaluated using He–Ne laser irradiation onto absorber samples. The material dependence of the temperature rise has a similar tendency between calculations and experiments. Experimentally, the sensitivity of the IRVB improved from 280 to 110 µW/cm2 using titanium with 1 µm thickness compared with conventional platinum with 2.5 µm thickness. Consequently, the signal-to-noise ratio of the IRVB could be improved from 2.8 to 9.1

    Signal to noise ratio of upgraded imaging bolometer for KSTAR

    Get PDF
    An InfraRed imaging Video Bolometer (IRVB) was installed on KSTAR in 2012 having a ∼2 μm × 7 cm × 9 cm Pt foil blackened with graphite and a 5 mm × 5 mm aperture located 7.65 cm from the foil with 16 × 12 channels and a time resolution of 10 ms. The IR camera was an Indigo Phoenix (InSb, 320 × 256 pixels, 435 fps, <25 mK). In 2017, the IRVB was upgraded by replacing the IR camera with a FLIR SC7600 (InSb, 640 × 512 pixels, 105 fps, <25 mK). The aperture area was reduced by approximately half to 3.5 mm × 3.5 mm, and the number of channels was quadrupled to 32 × 24. A synthetic image derived using the projection matrix for the upgraded IRVB from a Scrape Off Layer Plasma Simulator (SOLPS) model with 146 kW of total radiated power had a maximum signal of 7.6 W/m2 and a signal to noise ratio (SNR) of 11. Experimental data for a plasma with parameters similar to the SOLPS model (total radiated power of 158 kW) had a maximum signal of 12.6 W/m2 and noise equivalent power density (SNR) of 0.9 W/m2 (14)

    A new multi-tracer pellet injection for a simultaneous study of low- and mid/high-Z impurities in high-temperature plasmas

    Get PDF
    A new multi-tracer technique in the Tracer-Encapsulated Solid Pellet (TESPEL) method has been developed in order to acquire simultaneously the information about the behaviors of various impurities, i.e., to study concurrently the behaviors of low- and mid/high-Z impurities in magnetically confined high-temperature plasmas. In this new technique, an inorganic compound (for example, lithium titanate, Li2TiO3) is proposed to be used as a tracer embedded in the core of the TESPEL, instead of pure elements. The results of the proof-of-principle experiment clearly demonstrate the applicability of the new multi-tracer technique in the TESPEL method for the simultaneous study of behaviors of low- and mid/high-Z impurities in high-temperature plasmas
    • …
    corecore