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An InfraRed imaging Video Bolometer (IRVB) was installed on KSTAR in 2012 having a ~2 micron x 7 cm 
x 9 cm Pt foil blackened with graphite and a 5 mm x 5 mm aperture located 7.65 cm from the foil with 16 x 
12 channels and a time resolution of 10 ms.   The IR camera was an Indigo Phoenix  (InSb, 320 x 256 pixels, 
435 fps, <25 mK).  In 2017 the IRVB was upgraded by replacing the IR camera with a FLIR SC7600 (InSb, 
640 x 512 pixels, 105 fps, <25 mK).  The aperture area was reduced by approximately half to 3.5 mm x 3.5 
mm and the number of channels was quadrupled to 32 x 24.  A synthetic image derived using the projection 
matrix for the upgraded IRVB from a SOLPS model with 146 kW of total radiated power had a maximum 
signal of 7.6 W/m2 and SNR of 11.  Experimental data for a plasma with parameters similar to the SOLPS 
model (total radiated power of 158 kW) had a maximum signal of 12.6 W/m2 and NEPD (SNR) of 0.9 W/m2 
(14). 
 

I. Infra-Red imaging Video Bolometer  

 Bolometric measurements are essential to the 
estimation of the total radiated power from a magnetic 
fusion device for the purposes of power balance1 and 
impurity seeding studies2.  Conventional bolometer 
detectors to be installed in ITER are based on the 
temperature dependence of the electrical resistance of a 
metal meander which is thermally coupled to a photon 
absorbing foil by an intermediate insulating substrate3.  
Using a Wheatstone bridge and associated electronic 
circuitry to sense the change in the resistance resulting 
from the heat imparted on the foil by the absorbed photon, 
the resistive bolometer is susceptible to electromagnetic 
noise from various sources which are abundant in a fusion 
device, in particular from ion cyclotron resonant frequency 
induced noise4.  In addition, the insulating layer which is 
needed to electrically isolate the absorbing foil from the 
sensing meander presents challenges in constructing a 
resistive bolometer that can survive the extreme 
temperature swings and nuclear radiation of a fusion 
reactor5.  The resistive bolometers are typically arranged in 
linear arrays behind a collimating aperture to provide line 
integrated measurements of radiation from different parts 

of the plasma.  With a sufficient number of detectors 
arrayed around the plasma a tomographic inversion can be 
performed to provide a local measurement of the plasma 
emissivity6.  

 In an effort to develop a more reactor-relevant 
bolometer by avoiding the problems of the resistive 
bolometers with electromagnetic noise and large 
temperature variations, a new type of bolometer known as 
the InfraRed imaging Video bolometer (IRVB)7 has been 
under development8, which leverages off the advances in 
infrared (IR) imaging technology to measure the 
temperature change in a foil absorbing radiation from the 
plasma.  By using a graphite blackened foil, the broadband 
radiation absorbed through a collimating aperture is 
efficiently converted into IR radiation that can be 
transferred nearly noiselessly by appropriate IR optics to 
an IR camera outside of the vacuum vessel.   By 
dispensing with the substrate and resistive meander, this 
avoids the previously mentioned problems characteristic of 
the resistive bolometer, while bringing the power of 
imaging to bolometric measurement.   

 In this paper we look at one of the first applications 
of this diagnostic to a tokamak in terms of the sensitivity 
as quantified by the signal and noise levels, obtained 
through estimation, modelling and experiment.  In Section 
II the upgrade will be described. In Section III the 
equations and parameters used in the noise and rough 
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In order to calculate the synthetic images, Si, for 
channel number i, for the purpose of signal estimation, a 
response matrix, Hij, where j is the plasma voxel index, is 
calculated and multiplied by the emissivity, Ij, from the 
SOLPS model.   

௜ܵ ൌ ∑ ௝௝ܫ௜௝ܪ                                (3) 
 

The SOLPS model used in this work is the SOLPS-
ITER code package14 and treats all the charge states of D 
(fuel) and C (impurity) ions. The SOLPS grid for KSTAR 
has 96 (poloidal) x 36 (radial) cells in the edge and 
divertor regions.  The input power is 250 kW each for both 
electrons and ions.  The electron density at the outer mid-
plane separatrix is 2.3 x 1019 m-3. The perpendicular heat 
diffusion coefficient for ions is set to 0.5 m2/s and i = e 
= 1.0 m2/s.   The emissivity data from the model is first 
resampled onto a 5250 (R) x 2900 (Z) grid having cell 
dimensions of R = 0.2 mm and Z = 1 mm in the range 
1.26 m < R < 2.31 m and -1.45 m < Z < 1.45 m to insure 
that the cell size is smaller than the original cell size for 
accurate resampling.  Then the data is resampled onto a 
grid having 21 (R) x 58 (Z), 5 cm square cells in the same 
range as the previous grid as shown in Figure 2.  Prior to 
resampling the total radiated power was 147 kW. After 

resampling it was slightly reduced to 146 kW.   

The projection matrix was generated for the upgraded 
IRVB by stepping 1 cm (in the direction normal to the foil) 
along the line of sight until the wall was encountered.  The 
aperture was subdivided to keep the dimensions of the 
subapertures below 1 cm.  The bolometer pixel was not 
subdivided.  The dimension of the projection matrix were 
then 768 (i, bolometer pixels) x 1218 (j, plasma voxels).   

The synthetic image resulting from the vector 
multiplication of the response matrix by the emissivity 
matrix is shown in Figure 3.  The maximum signal level 
and the corresponding SNR are shown in Table 1.   

V. Experimental images and comparison of signal 
and noise levels 

Experimental bolometric images for two plasmas are 
shown in Figures 4 and 5 for comparison with the 
synthetic image signal levels.  The first  (Fig. 4) is for a 
plasma with C as the only intrinsic impurity and a radiated 
power of 158 kW to nearly match the SOLPS case.   The 
second image (Figure 5) is for a plasma with Kr puffing 
and a much higher radiated power of 1.075 MW.  The 
maximum value of the signal, the experimentally 
determined error and the resulting SNR are shown in Table 

1.   

Table 1. Signal and noise estimates for the original and upgraded IRVBs on KSTAR. Numbers in () are for the plasma 
with Krypton puffing in shot 16950 whose data is shown in Figure 5. 

IRVB 
IRVB 

channel 
number 

Aap 
SIRVB 

(a)  
(Eq. 1) 

Ssignal  
(b)  

(Eq. 2)
SNR 
(b/a)

Ssignal          

(c)           

(syn. data)
SNR 
(c/a)

SIRVB         

(d)      
(exp. data) 

Ssignal         

(e)          
(exp. data) 

SNR 
(e/d) 

(mm2) (W/m2) (W/m2) (W/m2) (W/m2) (W/m2) 
original 12 x 16 5 x 5 0.39 7.7 20 - - - - - 

upgrade 24 x 32 3.5 x 3.5 0.71 3.8 5.4 7.62 10.7
0.90    
(2.1) 

12.64 
(115.3) 

14.1 
(54.9)
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