73 research outputs found

    Activity of Hokkaido University Neutron Source, HUNS

    Get PDF
    AbstractHokkaido University neutron source, HUNS was completed in 1973, and has been used actively for developments of moderators, neutron instruments, neutron devices and new methods for 40 years although its power is not so high. Recently, a pulsed neutron imaging method has been developed and a new type of small angle neutron scattering method has been also developed. The pulsed neutron imaging is a unique method that can give the physical quantities such as crystallographic quantities of materials over wide area of the real space. So far, the small angle neutron scattering (SANS) is considered to be impossible at a neutron source with a power of HUNS. However, mini focusing SANS (mfSANS) was developed and proved to be useful. Here, we present the present activities on the pulsed neutron imaging and mfSANS at HUNS

    Different responses to oxidized low-density lipoproteins in human polarized macrophages

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Oxidized low-density lipoprotein (oxLDL) uptake by macrophages plays an important role in foam cell formation. It has been suggested the presence of heterogeneous subsets of macrophage, such as M1 and M2, in human atherosclerotic lesions. To evaluate which types of macrophages contribute to atherogenesis, we performed cDNA microarray analysis to determine oxLDL-induced transcriptional alterations of each subset of macrophages.</p> <p>Results</p> <p>Human monocyte-derived macrophages were polarized toward the M1 or M2 subset, followed by treatment with oxLDL. Then gene expression levels during oxLDL treatment in each subset of macrophages were evaluated by cDNA microarray analysis and quantitative real-time RT-PCR. In terms of high-ranking upregulated genes and functional ontologies, the alterations during oxLDL treatment in M2 macrophages were similar to those in nonpolarized macrophages (M0). Molecular network analysis showed that most of the molecules in the oxLDL-induced highest scoring molecular network of M1 macrophages were directly or indirectly related to transforming growth factor (TGF)-β1. Hierarchical cluster analysis revealed commonly upregulated genes in all subset of macrophages, some of which contained antioxidant response elements (ARE) in their promoter regions. A cluster of genes that were specifically upregulated in M1 macrophages included those encoding molecules related to nuclear factor of kappa light polypeptide gene enhancer in B-cells (NF-κB) signaling pathway. Quantitative real-time RT-PCR showed that the gene expression of interleukin (IL)-8 after oxLDL treatment in M2 macrophages was markedly lower than those in M0 and M1 cells. <it>HMOX1 </it>gene expression levels were almost the same in all 3 subsets of macrophages even after oxLDL treatment.</p> <p>Conclusions</p> <p>The present study demonstrated transcriptional alterations in polarized macrophages during oxLDL treatment. The data suggested that oxLDL uptake may affect TGF-β1- and NF-κB-mediated functions of M1 macrophages, but not those of M0 or M2 macrophages. It is likely that M1 macrophages characteristically respond to oxLDL.</p

    First Imaging Experiment of a Lithium Ion Battery by a Pulsed Neutron Beam at J-PARC/MLF/BL09

    Get PDF
    AbstractWe obtain the transmission image of a commercial lithium ion (Li-ion) battery using a pulsed neutron beam at the beamline 09 of the Materials and Life Science Experimental Facility at the Japan Proton Accelerator Research Complex. The purpose of this study is to improve the performance of the Li-ion battery by nondestructive observation of its charging and discharging. The transmission images for three charge states (3.2V, 3.7V, and 4.2V) reveal differences between these three states, which we attribute to electrolyte migration. The transmission spectra show Bragg edges originating from the electrodes, current collectors, and battery vessel. Although the battery as a whole has the expected relation between the charge accumulation and the quantity of lithium amounts in the positive and negative electrodes, a portion of the battery deviates from this relation, which may imply a position dependent charging in the battery

    Effects of calcium channel blockers on glucose tolerance, inflammatory state, and circulating progenitor cells in non-diabetic patients with essential hypertension: a comparative study between Azelnidipine and amlodipine on glucose tolerance and endothelial function - a crossover trial (AGENT)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hypertension is associated with impaired glucose tolerance and insulin resistance. Medical treatment that interferes with various steps in the renin-angiotensin system improves glucose tolerance and insulin resistance. However, it remains unclear if long-acting calcium channel blockers (CCBs) such as azelnidipine and amlodipine affect glucose tolerance and insulin resistance in clinical practice.</p> <p>Methods</p> <p>Seventeen non-diabetic patients with essential hypertension who had controlled blood pressure levels using amlodipine (5 mg/day) were enrolled in this study. After randomization, either azelnidipine (16 mg/day) or amlodipine (5 mg/day) was administered in a crossover design for 12-weeks. At baseline and the end of each CCB therapy, samples of blood and urine were collected and 75 g oral glucose tolerance test (OGTT) was performed. In addition, hematopoietic progenitor cells (HPCs) were measured at each point by flow cytometry and endothelial functions were measured by fingertip pulse amplitude tonometry using EndoPAT.</p> <p>Results</p> <p>Although blood pressure levels were identical after each CCB treatment, the heart rate significantly decreased after azelnidipine administration than that after amlodipine administration (<it>P </it>< 0.005). Compared with amlodipine administration, azelnidipine significantly decreased levels of glucose and insulin 120 min after the 75 g OGTT (both <it>P </it>< 0.05). Serum levels of high-sensitivity C-reactive protein (<it>P </it>= 0.067) and interleukin-6 (<it>P </it>= 0.035) were decreased. Although endothelial functions were not different between the two medication groups, the number of circulating HPCs was significantly increased after azelnidipine administration (<it>P </it>= 0.016).</p> <p>Conclusions</p> <p>These results suggest that azelnidipine treatment may have beneficial effects on glucose tolerance, insulin sensitivity, the inflammatory state, and number of circulating progenitor cells in non-diabetic patients with essential hypertension.</p

    Enhanced production of nitric oxide, reactive oxygen species, and pro-inflammatory cytokines in very long chain saturated fatty acid-accumulated macrophages

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Deterioration of peroxisomal β-oxidation activity causes an accumulation of very long chain saturated fatty acids (VLCSFA) in various organs. We have recently reported that the levels of VLCSFA in the plasma and/or membranes of blood cells were significantly higher in patients with metabolic syndrome and in patients with coronary artery disease than the controls. The aim of the present study is to investigate the effect of VLCSFA accumulation on inflammatory and oxidative responses in VLCSFA-accumulated macrophages derived from X-linked adrenoleukodystrophy (X-ALD) protein (ALDP)-deficient mice.</p> <p>Results</p> <p>Elevated levels of VLCSFA were confirmed in macrophages from ALDP-deficient mice. The levels of nitric oxide (NO) production stimulated by lipopolysaccharide (LPS) and interferon-γ (IFN-γ), intracellular reactive oxygen species (ROS), and pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interluekin-6 (IL-6), and interleukin-12p70 (IL-12p70), were significantly higher in macrophages from ALDP-deficient mice than in those from wild-type mice. The inducible NO synthase (iNOS) mRNA expression also showed an increase in macrophages from ALDP-deficient mice.</p> <p>Conclusion</p> <p>These results suggested that VLCSFA accumulation in macrophages may contribute to the pathogenesis of inflammatory diseases through the enhancement of inflammatory and oxidative responses.</p
    corecore