22 research outputs found

    Vuorovaikutus varhaiskasvatuksen tiimityössä

    Get PDF
    Tiivistelmä. Tämän tutkimuksen tarkoituksena on selvittää, millä tavoin vuorovaikutus näyttäytyy varhaiskasvatuksen tiimityössä. Tiimityöllä tarkoitetaan varhaiskasvatuksen kontekstissa varhaiskasvatuksen hoitajien ja opettajien muodostamaa kasvattajatiimiä, joka vastaa lapsiryhmän toiminnan suunnittelusta ja ohjaamisesta. Lapsiryhmän pedagoginen vastuu on varhaiskasvatuksen opettajalla ja opettajan tehtävänä on huolehtia sen toteutumisesta yhdessä tiimin kanssa. Toteutamme tämän tutkimuksen integroivana kirjallisuuskatsauksena, jolloin integroiva kirjallisuuskatsaus antaa tutkijalle mahdollisuuden paneutua oman alansa olennaisiin aineistoihin. Teoreettisessa viitekehyksessä käymme läpi tiimityötä varhaiskasvatuksessa, avaamme yhteistyön ja vuorovaikutuksen käsitteitä sekä sitä, miten opettajan itsereflektio näyttäytyy osana tiimityötä ja kehittämistä. Näiden käsitteiden tarkastelun avulla syntyy keskeinen ymmärrys varhaiskasvatuksen tiimityöstä ja siinä ilmenevistä vuorovaikutuksen ulottuvuuksista. Tärkeää on ymmärtää oman toiminnan vaikutus tiimissä työskentelemiseen ja tiimin toimivuuteen. Tiimityön vuorovaikutus sekä siihen liittyvät haasteet ja vahvuudet vaikuttavat olennaisesti tiimityön laatuun. Haasteita voi ilmetä esimerkiksi kommunikointitavoissa, joista esimerkkeinä voivat olla heikko vuorovaikutus tai erilaiset kasvatusnäkemykset. Lisäksi vastuualueiden epäselvyys ja puutteellinen tiedonkulku vaikuttavat tiimin toimivuuteen. Toisaalta työntekijöiden erilaisuus ja erilaiset tavat toimia voidaan nähdä tiimityön vahvuutena. Laadukas tiimityö antaa jäsenille parhaassa mahdollisessa tilanteessa tukea, ja mahdollisuuden kehittää ammatillista osaamistaan yhdessä jaetun asiantuntijuuden kautta. Tiimin toimivuus heijastuu myös työyhteisössä vallitsevaan ilmapiiriin ja työhyvinvointiin

    Varieties of Accusative

    No full text

    The typology and diachrony of partitives

    No full text
    Partitive cases constitutes a rather heterogeneous category. They may be defined formally, when the notion is confined primarily to languages with a dedicated partitive case, such as Finnish and Basque. From a functional perspective, in turn, also other languages may have morphemes that express the same function, e.g. other cases (such as the genitive in several Indo-European languages) or other formal means (adpositions, verbal cross-reference etc.). Functionally, partitive case markers can be used to express an array of functions. Typically, they are related to expression partiality or indefiniteness, but often also to lower transitivity. What is most notable is that there is no link between partitive cases and a specific grammatical relation: partitive cases can code subjects and direct objects; in addition, they may code adverbials and appear with adpositions in some languages. Formal and functional properties of partitive case markers are discussed thoroughly in this paper from a cross-linguistic perspective. The paper also includes a discussion of the diachrony of partitive case markers

    The seismo-hydromechanical behavior during deep geothermal reservoir stimulations: open questions tackled in a decameter-scale in situ stimulation experiment

    No full text
    In this contribution, we present a review of scientific research results that address seismo-hydromechanically coupled processes relevant for the development of a sustainable heat exchanger in low-permeability crystalline rock and introduce the design of the In situ Stimulation and Circulation (ISC) experiment at the Grimsel Test Site dedicated to studying such processes under controlled conditions. The review shows that research on reservoir stimulation for deep geothermal energy exploitation has been largely based on laboratory observations, large-scale projects and numerical models. Observations of full-scale reservoir stimulations have yielded important results. However, the limited access to the reservoir and limitations in the control on the experimental conditions during deep reservoir stimulations is insufficient to resolve the details of the hydromechanical processes that would enhance process understanding in a way that aids future stimulation design. Small-scale laboratory experiments provide fundamental insights into various processes relevant for enhanced geothermal energy, but suffer from (1) difficulties and uncertainties in upscaling the results to the field scale and (2) relatively homogeneous material and stress conditions that lead to an oversimplistic fracture flow and/or hydraulic fracture propagation behavior that is not representative of a heterogeneous reservoir. Thus, there is a need for intermediate-scale hydraulic stimulation experiments with high experimental control that bridge the various scales and for which access to the target rock mass with a comprehensive monitoring system is possible. The ISC experiment is designed to address open research questions in a naturally fractured and faulted crystalline rock mass at the Grimsel Test Site (Switzerland). Two hydraulic injection phases were executed to enhance the permeability of the rock mass. During the injection phases the rock mass deformation across fractures and within intact rock, the pore pressure distribution and propagation, and the microseismic response were monitored at a high spatial and temporal resolution

    The seismo-hydromechanical behavior during deep geothermal reservoir stimulations: open questions tackled in a decameter-scale in situ stimulation experiment

    Get PDF
    In this contribution, we present a review of scientific research results that address seismo-hydromechanically coupled processes relevant for the development of a sustainable heat exchanger in low-permeability crystalline rock and introduce the design of the In situ Stimulation and Circulation (ISC) experiment at the Grimsel Test Site dedicated to studying such processes under controlled conditions. The review shows that research on reservoir stimulation for deep geothermal energy exploitation has been largely based on laboratory observations, large-scale projects and numerical models. Observations of full-scale reservoir stimulations have yielded important results. However, the limited access to the reservoir and limitations in the control on the experimental conditions during deep reservoir stimulations is insufficient to resolve the details of the hydromechanical processes that would enhance process understanding in a way that aids future stimulation design. Small-scale laboratory experiments provide fundamental insights into various processes relevant for enhanced geothermal energy, but suffer from (1) difficulties and uncertainties in upscaling the results to the field scale and (2) relatively homogeneous material and stress conditions that lead to an oversimplistic fracture flow and/or hydraulic fracture propagation behavior that is not representative of a heterogeneous reservoir. Thus, there is a need for intermediate-scale hydraulic stimulation experiments with high experimental control that bridge the various scales and for which access to the target rock mass with a comprehensive monitoring system is possible. The ISC experiment is designed to address open research questions in a naturally fractured and faulted crystalline rock mass at the Grimsel Test Site (Switzerland). Two hydraulic injection phases were executed to enhance the permeability of the rock mass. During the injection phases the rock mass deformation across fractures and within intact rock, the pore pressure distribution and propagation, and the microseismic response were monitored at a high spatial and temporal resolution
    corecore