464 research outputs found
Influence of Zeeman splitting and thermally excited polaron states on magneto-electrical and magneto-thermal properties of magnetoresistive polycrystalline manganite La_{0.8}Sr_{0.2}MnO_3
Some possible connection between spin and charge degrees of freedom in
magneto-resistive manganites is investigated through a thorough experimental
study of the magnetic (AC susceptibility and DC magnetization) and transport
(resistivity and thermal conductivity) properties. Measurements are reported in
the case of well characterized polycrystalline La_{0.8}Sr_{0.2}MnO_3 samples.
The experimental results suggest rather strong field-induced polarization
effects in our material, clearly indicating the presence of ordered FM regions
inside the semiconducting phase. Using an analytical expression which fits the
spontaneous DC magnetization, the temperature and magnetic field dependences of
both electrical resistivity and thermal conductivity data are found to be well
reproduced through a universal scenario based on two mechanisms: (i) a
magnetization dependent spin polaron hopping influenced by a Zeeman splitting
effect, and (ii) properly defined thermally excited polaron states which have
to be taken into account in order to correctly describe the behavior of the
less conducting region. Using the experimentally found values of the magnetic
and electron localization temperatures, we obtain L=0.5nm and m_p=3.2m_e for
estimates of the localization length (size of the spin polaron) and effective
polaron mass, respectively.Comment: Accepted for publication in Journal of Applied Physic
Unidirectional Nonlinear PT-symmetric Optical Structures
We show that non-linear optical structures involving a balanced gain-loss
profile, can act as unidirectional optical valves. This is made possible by
exploiting the interplay between the fundamental symmetries of parity (P) and
time (T), with optical nonlinear effects. This novel unidirectional dynamics is
specifically demonstrated for the case of an integrable PT-symmetric nonlinear
system.Comment: 6 pages,5 figure
Ab initio exchange interactions and magnetic properties of Gd2Fe17 iron sublattice: rhombohedral vs. hexagonal phases
In the framework of the LSDA+U method electronic structure and magnetic
properties of the intermetallic compound Gd2Fe17 for both rhombohedral and
hexagonal phases have been calculated. On top of that, ab initio exchange
interaction parameters within the Fe sublattice for all present nearest and
some next nearest Fe ions have been obtained. It was found that for the first
coordination sphere direct exchange interaction is ferromagnetic. For the
second coordination sphere indirect exchange interaction is observed to be
weaker and of antiferromagnetic type. Employing the theoretical values of
exchange parameters Curie temperatures Tc of both hexagonal and rhombohedral
phases of Gd2Fe17 within Weiss mean-field theory were estimated. Obtained
values of Tc and its increase going from the hexagonal to rhombohedral crystal
structure of Gd2Fe17 agree well with experiment. Also for both structures
LSDA+U computed values of total magnetic moment coincide with experimental
ones.Comment: 20 pages, 2 figures; V2 as published in PR
Creation of Entanglement by Interaction with a Common Heat Bath
I show that entanglement between two qubits can be generated if the two
qubits interact with a common heat bath in thermal equilibrium, but do not
interact directly with each other. In most situations the entanglement is
created for a very short time after the interaction with the heat bath is
switched on, but depending on system, coupling, and heat bath, the entanglement
may persist for arbitrarily long times. This mechanism sheds new light on the
creation of entanglement. A particular example of two quantum dots in a closed
cavity is discussed, where the heat bath is given by the blackbody radiation.Comment: 4 revtex pages, 1 eps figure; replaced with published version; short
discussion on entanglement distillation adde
Formation of dispersive hybrid bands at an organic-metal interface
An electronic band with quasi-one dimensional dispersion is found at the
interface between a monolayer of a charge-transfer complex (TTF-TCNQ) and a
Au(111) surface. Combined local spectroscopy and numerical calculations show
that the band results from a complex mixing of metal and molecular states. The
molecular layer folds the underlying metal states and mixes with them
selectively, through the TTF component, giving rise to anisotropic hybrid
bands. Our results suggest that, by tuning the components of such molecular
layers, the dimensionality and dispersion of organic-metal interface states can
be engineered
Existence of temperature on the nanoscale
We consider a regular chain of quantum particles with nearest neighbour
interactions in a canonical state with temperature . We analyse the
conditions under which the state factors into a product of canonical density
matrices with respect to groups of particles each and under which these
groups have the same temperature . In quantum mechanics the minimum group
size depends on the temperature , contrary to the classical case.
We apply our analysis to a harmonic chain and find that for
temperatures above the Debye temperature and below.Comment: Version that appeared in PR
Non-perturbative embedding of local defects in crystalline materials
We present a new variational model for computing the electronic first-order
density matrix of a crystalline material in presence of a local defect. A
natural way to obtain variational discretizations of this model is to expand
the difference Q between the density matrix of the defective crystal and the
density matrix of the perfect crystal, in a basis of precomputed maximally
localized Wannier functions of the reference perfect crystal. This approach can
be used within any semi-empirical or Density Functional Theory framework.Comment: 13 pages, 4 figure
Resonance Plasmon Linewidth Oscillations in Spheroidal Metallic Nanoparticle Embedded in a Dielectric Matrix
The kinetic approach is applied to calculate oscillations of a surface
plasmon linewidth in a spheroidal metal nanoparticle embedded in any dielectric
media. The principal attention is focused on the case, when the free electron
path is much greater than the particle size.
The linewidth of the plasmon resonance as a function of the particle radius,
shape, dielectric constant of the surrounding medium, and the light frequency
is studied in detail. It is found that the resonance plasmon linewidth
oscillates with increasing both the particle size and the dielectric constant
of surrounding medium.
The main attention is paid to the electron surface-scattering contribution to
the plasmon decay.
All calculations the plasmon resonance linewidth are illustrated by the
example of the Na nanoparticles with different radii.
The results obtained in the kinetic approach are compared with the known ones
from other models.
The role of the radiative damping is discussed as well.Comment: 12 pages, 5 figuresm 1 table. arXiv admin note: substantial text
overlap with arXiv:1210.564
Magnetism: the Driving Force of Order in CoPt. A First-Principles Study
CoPt or FePt equiatomic alloys order according to the tetragonal L10
structure which favors their strong magnetic anisotropy. Conversely magnetism
can influence chemical ordering. We present here {\it ab initio} calculations
of the stability of the L10 and L12 structures of Co-Pt alloys in their
paramagnetic and ferromagnetic states. They show that magnetism strongly
reinforces the ordering tendencies in this system. A simple tight-binding
analysis allows us to account for this behavior in terms of some pertinent
parameters
A new approach to the modelling of local defects in crystals: the reduced Hartree-Fock case
This article is concerned with the derivation and the mathematical study of a
new mean-field model for the description of interacting electrons in crystals
with local defects. We work with a reduced Hartree-Fock model, obtained from
the usual Hartree-Fock model by neglecting the exchange term. First, we recall
the definition of the self-consistent Fermi sea of the perfect crystal, which
is obtained as a minimizer of some periodic problem, as was shown by Catto, Le
Bris and Lions. We also prove some of its properties which were not mentioned
before. Then, we define and study in details a nonlinear model for the
electrons of the crystal in the presence of a defect. We use formal analogies
between the Fermi sea of a perturbed crystal and the Dirac sea in Quantum
Electrodynamics in the presence of an external electrostatic field. The latter
was recently studied by Hainzl, Lewin, S\'er\'e and Solovej, based on ideas
from Chaix and Iracane. This enables us to define the ground state of the
self-consistent Fermi sea in the presence of a defect. We end the paper by
proving that our model is in fact the thermodynamic limit of the so-called
supercell model, widely used in numerical simulations.Comment: Final version, to appear in Comm. Math. Phy
- …