4,516 research outputs found

    Magnetic moment and magnetic anisotropy of linear and zigzag 4{\it d} and 5{\it d} transition metal nanowires: First-principles calculations

    Full text link
    An extensive {\it ab initio} study of the physical properties of both linear and zigzag atomic chains of all 4dd and 5dd transition metals (TM) within the GGA by using the accurate PAW method, has been carried out. All the TM linear chains are found to be unstable against the corresponding zigzag structures. All the TM chains, except Nb, Ag and La, have a stable (or metastable) magnetic state in either the linear or zigzag or both structures. Magnetic states appear also in the sufficiently stretched Nb and La linear chains and in the largely compressed Y and La chains. The spin magnetic moments in the Mo, Tc, Ru, Rh, W, Re chains could be large (\geq1.0 μB\mu_B/atom). Structural transformation from the linear to zigzag chains could suppress the magnetism already in the linear chain, induce the magnetism in the zigzag structure, and also cause a change of the magnetic state (ferromagnetic to antiferroamgetic or vice verse). The calculations including the spin-orbit coupling reveal that the orbital moments in the Zr, Tc, Ru, Rh, Pd, Hf, Ta, W, Re, Os, Ir and Pt chains could be rather large (\geq0.1 μB\mu_B/atom). Importantly, large magnetic anisotropy energy (\geq1.0 meV/atom) is found in most of the magnetic TM chains, suggesting that these nanowires could have fascinating applications in ultrahigh density magnetic memories and hard disks. In particular, giant magnetic anisotropy energy (\geq10.0 meV/atom) could appear in the Ru, Re, Rh, and Ir chains. Furthermore, the magnetic anisotropy energy in several elongated linear chains could be as large as 40.0 meV/atom. A spin-reorientation transition occurs in the Ru, Ir, Ta, Zr, La and Zr, Ru, La, Ta and Ir linear chains when they are elongated. Remarkably, all the 5dd as well as Tc and Pd chains show the colossal magnetic anisotropy (i.e., it is impossible to rotate magnetization into certain directions). Finally, the electronic band structure and density of states of the nanowires have also been calculated in order to understand the electronic origin of the large magnetic anisotropy and orbital magnetic moment as well as to estimate the conduction electron spin polarization.Comment: To appear in Phys. Rev.

    New Ideas on SUSY Searches at Future Linear Colliders

    Full text link
    Several results obtained within the SUSY group of the ECFA/DESY linear collider study are presented: (i) a possibility to determine tan beta and the trilinear couplings A_f via polarisation in sfermion decays, (ii) the impact of complex MSSM parameters on the third generation sfermion decays, (iii) determination of CP violation in the complex MSSM via T-odd asymmetries in neutralino production and decay, and (iv) an analysis of the chargino and neutralino mass parameters at one-loop level.Comment: 3 pages, LaTeX, 5 eps figures; talk presented by S. Hesselbach at the International Europhysics Conference on High Energy Physics (HEP 2003), 17-23 July 2003, Aachen, German

    Doping of graphene by a Au(111) substrate: Calculation strategy within the local density approximation and a semiempirical van der Waals approach

    Full text link
    We have performed a density functional study of graphene adsorbed on Au(111) surface using both a local density approximation and a semiempirical van der Waals approach proposed by Grimme, known as the DFT-D2 method. Graphene physisorbed on metal has the linear dispersion preserved in the band-structure, but the Fermi level of the system is shifted with respect to the conical points which results in a doping effect. We show that the type and amount of doping depends not only on the choice of the exchange-correlation functional used in the calculations, but also on the supercell geometry that models the physical system. We analyzed how the factors such as the in-plane cell parameter and interlayer spacing in gold influence the Fermi level shift and we found that even a small variation in these parameters may cause a transition from p-type to n-type doping. We have selected a reasonable set of model parameters and obtained that graphene is either undoped or at most slightly p-type doped on the clean Au(111) surface, which seems to be in line with experimental findings. On the other hand, modifications of the substrate lattice may induce larger doping up to 0.30-0.40 eV depending on the graphene-metal adsorption distance. The sensitivity of the graphene-gold interface to the structural parameters may allow to tune doping across the samples which could lead to possible applications in graphene-based electronic devices. We believe that the present remarks can be also useful for other studies based on the periodic DFT

    Identification of Colour Reconnection using Factorial Correlator

    Get PDF
    A new signal is proposed for the colour reconnection in the hadronic decay of W+ W- in e+e- collisions. Using Pythia Monte Carlo it is shown that this signal, being based on the factorial correlator, is more sensitive than the ones using only averaged quantities.Comment: 6 pages 1 postscript figur

    Electron-Phonon Interaction in Embedded Semiconductor Nanostructures

    Full text link
    The modification of acoustic phonons in semiconductor nanostructures embedded in a host crystal is investigated including corrections due to strain within continuum elasticity theory. Effective elastic constants are calculated employing {\em ab initio} density functional theory. For a spherical InAs quantum dot embedded in GaAs barrier material, the electron-phonon coupling is calculated. Its strength is shown to be suppressed compared to the assumption of bulk phonons

    Comment on ``Analytical and numerical verification of the Nernst heat theorem for metals''

    Get PDF
    Recently, H{\o}ye, Brevik, Ellingsen and Aarseth (quant-ph/0703174) claimed that the use of the Drude dielectric function leads to zero Casimir entropy at zero temperature in accordance with Nernst's theorem. We demonstrate that their proof is not applicable to metals with perfect crystal lattices having no impurities. Thus there is no any contradiction with previous results in the literature proving that the Drude dielectric function violates the Nernst theorem for the Casimir entropy in the case of perfect crystal lattices. We also indicate mistakes in the coefficients of their asymptotic expressions for metals with impurities.Comment: 6 page

    Spatial search in a honeycomb network

    Full text link
    The spatial search problem consists in minimizing the number of steps required to find a given site in a network, under the restriction that only oracle queries or translations to neighboring sites are allowed. In this paper, a quantum algorithm for the spatial search problem on a honeycomb lattice with NN sites and torus-like boundary conditions. The search algorithm is based on a modified quantum walk on a hexagonal lattice and the general framework proposed by Ambainis, Kempe and Rivosh is used to show that the time complexity of this quantum search algorithm is O(NlogN)O(\sqrt{N \log N}).Comment: 10 pages, 2 figures; Minor typos corrected, one Reference added. accepted in Math. Structures in Computer Science, special volume on Quantum Computin

    Spatial quantum search in a triangular network

    Full text link
    The spatial search problem consists in minimizing the number of steps required to find a given site in a network, under the restriction that only oracle queries or translations to neighboring sites are allowed. We propose a quantum algorithm for the spatial search problem on a triangular lattice with N sites and torus-like boundary conditions. The proposed algortithm is a special case of the general framework for abstract search proposed by Ambainis, Kempe and Rivosh [AKR05] (AKR) and Tulsi [Tulsi08], applied to a triangular network. The AKR-Tulsi formalism was employed to show that the time complexity of the quantum search on the triangular lattice is O(sqrt(N logN)).Comment: 10 pages, 4 Postscript figures, uses sbc-template.sty, appeared in Annals of WECIQ 2010, III Workshop of Quantum Computation and Quantum Informatio

    Universal low-temperature tricritical point in metallic ferromagnets and ferrimagnets

    Full text link
    An earlier theory of the quantum phase transition in metallic ferromagnets is revisited and generalized in three ways. It is shown that the mechanism that leads to a fluctuation-induced first-order transition in metallic ferromagnets with a low Curie temperature is valid, (1) irrespective of whether the magnetic moments are supplied by the conduction electrons or by electrons in another band, (2) for ferromagnets in the XY and Ising universality classes as well as for Heisenberg ferromagnets, and (3) for ferrimagnets as well as for ferromagnets. This vastly expands the class of materials for which a first-order transition at low temperatures is expected, and it explains why strongly anisotropic ferromagnets, such as UGe2, display a first-order transition as well as Heisenberg magnets.Comment: 11pp, 2 fig

    Controlled switching between paramagnetic and diamagnetic Meissner effect in Pb/Co nanocomposites

    Full text link
    A hybrid system which consists of a superconducting (SC) Pb film (100 nm thickness) containing \sim1 vol% single domain ferromagnetic (FM) Co particles of mean-size \sim4.5 nm reveal unusual magnetic properties: (i) a controlled switching between the usual diamagnetic and the unusual paramagnetic Meissner effect in field cooling as well as in zero-field cooling experiments (ii) amplification of the positive magnetization when the sample enters the SC state below Tc_c. These experimental findings can be explained by the formation of spontaneous vortices and the possible alignment of these vortices due to the foregoing alignment of the Co particle FM moments by an external magnetic field.Comment: 5 pages, 3 figure
    corecore