An earlier theory of the quantum phase transition in metallic ferromagnets is
revisited and generalized in three ways. It is shown that the mechanism that
leads to a fluctuation-induced first-order transition in metallic ferromagnets
with a low Curie temperature is valid, (1) irrespective of whether the magnetic
moments are supplied by the conduction electrons or by electrons in another
band, (2) for ferromagnets in the XY and Ising universality classes as well as
for Heisenberg ferromagnets, and (3) for ferrimagnets as well as for
ferromagnets. This vastly expands the class of materials for which a
first-order transition at low temperatures is expected, and it explains why
strongly anisotropic ferromagnets, such as UGe2, display a first-order
transition as well as Heisenberg magnets.Comment: 11pp, 2 fig