33 research outputs found

    Valuing life detection missions

    Full text link
    Recent discoveries imply that Early Mars was habitable for life-as-we-know-it; that Enceladus might be habitable; and that many stars have Earth-sized exoplanets whose insolation favors surface liquid water. These exciting discoveries make it more likely that spacecraft now under construction - Mars 2020, ExoMars rover, JWST, Europa Clipper - will find habitable, or formerly habitable, environments. Did these environments see life? Given finite resources (\$10bn/decade for the US ), how could we best test the hypothesis of a second origin of life? Here, we first state the case for and against flying life detection missions soon. Next, we assume that life detection missions will happen soon, and propose a framework for comparing the value of different life detection missions: Scientific value = (Reach x grasp x certainty x payoff) / \$ After discussing each term in this framework, we conclude that scientific value is maximized if life detection missions are flown as hypothesis tests. With hypothesis testing, even a nondetection is scientifically valuable.Comment: Accepted by "Astrobiology.

    Thermodynamic Limits on Magnetodynamos in Rocky Exoplanets

    Full text link
    To ascertain whether magnetic dynamos operate in rocky exoplanets more massive or hotter than the Earth, we developed a parametric model of a differentiated rocky planet and its thermal evolution. Our model reproduces the established properties of Earth's interior and magnetic field at the present time. When applied to Venus, assuming that planet lacks plate tectonics and has a dehydrated mantle with an elevated viscosity, the model shows that the dynamo shuts down or never operated. Our model predicts that at a fixed planet mass, dynamo history is sensitive to core size, but not to the initial inventory of long-lived, heat-producing radionuclides. It predicts that rocky planets larger than 2.5 Earth masses will not develop inner cores because the temperature-pressure slope of the iron solidus becomes flatter than that of the core adiabat. Instead, iron "snow" will condense near or at the top of these cores, and the net transfer of latent heat upwards will suppress convection and a dynamo. More massive planets can have anemic dynamos due to core cooling, but only if they have mobile lids (plate tectonics). The lifetime of these dynamos is shorter with increasing planet mass but longer with higher surface temperature. Massive Venus-like planets with stagnant lids and more viscous mantles will lack dynamos altogether. We identify two alternative sources of magnetic fields on rocky planets: eddy currents induced in the hot or molten upper layers of planets on very short period orbits, and dynamos in the ionic conducting layers of "ocean" planets with ~10% mass in an upper mantle of water (ice).Comment: Accepted to The Astrophysical Journa

    A roadmap to the efficient and robust characterization of temperate terrestrial planet atmospheres with JWST

    Full text link
    Ultra-cool dwarf stars are abundant, long-lived, and uniquely suited to enable the atmospheric study of transiting terrestrial companions with JWST. Amongst them, the most prominent is the M8.5V star TRAPPIST-1 and its seven planets, which have been the favored targets of eight JWST Cycle 1 programs. While Cycle 1 observations have started to yield preliminary insights into the planets, they have also revealed that their atmospheric exploration requires a better understanding of their host star. Here, we propose a roadmap to characterize the TRAPPIST-1 system -- and others like it -- in an efficient and robust manner. We notably recommend that -- although more challenging to schedule -- multi-transit windows be prioritized to constrain stellar heterogeneities and gather up to 2Ă—\times more transits per JWST hour spent. We conclude that in such systems planets cannot be studied in isolation by small programs, thus large-scale community-supported programs should be supported to enable the efficient and robust exploration of terrestrial exoplanets in the JWST era

    The 16th Data Release of the Sloan Digital Sky Surveys: First Release from the APOGEE-2 Southern Survey and Full Release of eBOSS Spectra

    Get PDF
    This paper documents the 16th data release (DR16) from the Sloan Digital Sky Surveys (SDSS), the fourth and penultimate from the fourth phase (SDSS-IV). This is the first release of data from the Southern Hemisphere survey of the Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2); new data from APOGEE-2 North are also included. DR16 is also notable as the final data release for the main cosmological program of the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), and all raw and reduced spectra from that project are released here. DR16 also includes all the data from the Time Domain Spectroscopic Survey and new data from the SPectroscopic IDentification of ERosita Survey programs, both of which were co-observed on eBOSS plates. DR16 has no new data from the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey (or the MaNGA Stellar Library "MaStar"). We also preview future SDSS-V operations (due to start in 2020), and summarize plans for the final SDSS-IV data release (DR17)
    corecore