531 research outputs found

    Grapevine breeding for resistance to powdery mildew: Bioassay system for evaluation of plant resistance and for characterization of different Uncinula necator strains

    Get PDF
    Several isolates of Uncinula necator were separated and kept in vitro. The pathogenicity of these isolates was compared by a bioassay system using small leaves issued from in vitro plants; 2 µl of spore suspension was inoculated on these leaves. Significative differences in sporulation time, aggressiveness, sporulation rate and resistance to fungicide triadimenol were observed between these isolates. Host plant variety also affects some of these characters of pathogenicity. The isolates were classified into 2 mating types concerning the aspect of perithecia formation by paired combination between 2 isolates. Productivity of perithecia varied in response to the combination of isolates and to host plant variety

    Multidimensional replica-exchange method for free-energy calculations

    Full text link
    We have developed a new simulation algorithm for free-energy calculations. The method is a multidimensional extension of the replica-exchange method. While pairs of replicas with different temperatures are exchanged during the simulation in the original replica-exchange method, pairs of replicas with different temperatures and/or different parameters of the potential energy are exchanged in the new algorithm. This greatly enhances the sampling of the conformational space and allows accurate calculations of free energy in a wide temperature range from a single simulation run, using the weighted histogram analysis method.Comment: 13 pages, (ReVTeX), 9 figures. J. Chem. Phys. 113 (2000), in pres

    Paramagnetic Phase of a Heavy-Fermion Compound, CeFePO, Probed by 57Fe M\"{o}ssbauer Spectroscopy

    Full text link
    57Fe M\"{o}ssbauer spectroscopy was applied to an iron-based layered compound CeFePO. At temperatures from 9.4 to 293 K, no magnetic splitting was observed in the M\"ossbauer spectra of CeFePO indicating a paramagnetic phase of the Fe magnetic sublattice. All the spectra were fitted with a small quadrupole splitting, and the Debye temperature of CeFePO was found to be \sim448 K. The isomer shift at room temperature, 0.32 mm/s, was almost equal to those of LnFeAsO (Ln = La, Ce, Sm). Comparing s-electron density using the isomer shifts and unit cell volumes, it was found that the Fe of CeFePO has a similar valence state to other layered iron-based quaternary oxypnictides except LaFePO

    Recovery of physiological traits in saplings of invasive Bischofia tree compared with three species native to the Bonin Islands under successive drought and irrigation cycles

    Get PDF
    Partial leaf shedding induced by hydraulic failure under prolonged drought can prevent excess water consumption, resulting in delayed recovery of carbon productivity following rainfall. To understand the manner of water use of invasive species in oceanic island forests under a fluctuating water regime, leaf shedding, multiple physiological traits, and the progress of embolism in the stem xylem under repeated drought-irrigation cycles were examined in the potted saplings of an invasive species, Bischofia javanica Blume, and three endemic native species, Schima mertensiana (Sieb. Et Zucc, ) Koitz., Hibiscus glaber Matsum, and Distylium lepidotum Nakai, from the Bonin Islands, Japan. The progress of xylem embolism was observed by cryo-scanning electron microscopy. The samples exhibited different processes of water saving and drought tolerance based on the different combinations of partial leaf shedding involved in embolized conduits following repeated de-rehydration. Predawn leaf water potential largely decreased with each successive drought-irrigation cycle for all tree species, except for B. javanica. B. javanica shed leaves conspicuously under drought and showed responsive stomatal conductance to VPD, which contributed to recover leaf gas exchange in the remaining leaves, following a restored water supply. In contrast, native tree species did not completely recover photosynthetic rates during the repeated droughtirrigation cycles. H. glaber and D. lepidotum preserved water in vessels and adjusted leaf osmotic rates but did not actively shed leaves. S. mertensiana exhibited partial leaf shedding during the first cycle with an osmotic adjustment, but they showed less responsive stomatal conductance to VPD. Our data indicate that invasive B. javanica saplings can effectively use water supplied suddenly under drought conditions. We predict that fluctuating precipitation in the future may change tree distributions even in mesic or moist sites in the Bonin Islands

    Detection of Diatomic Molecules in the Dust Forming Nova V2676 Oph

    Get PDF
    Novae are generally considered to be hot astronomical objects and show effective temperatures up to 10,000 K or higher at their visual maximum. But, it is theoretically predicted that the outer envelope of the nova outflow can become cool enough to form molecules that would be dissociated at high temperatures. We detected strong absorption bands of C2 and CN radicals in the optical spectrum of Nova V2676 Oph, a very slow nova with dust formation. This is the first report of the detection of C2 and the second one of CN in novae during outburst. Although such simple molecules are predicted to form in the envelope of the outflow based on previous studies, there are few reports of their detection. In the case of V2676 Oph, the presence of the molecular envelope is considered to be very transient, lasting several days only

    Renormalization group approach to vibrational energy transfer in protein

    Full text link
    Renormalization group method is applied to the study of vibrational energy transfer in protein molecule. An effective Lagrangian and associated equations of motion to describe the resonant energy transfer are analyzed in terms of the first-order perturbative renormalization group theory that has been developed as a unified tool for global asymptotic analysis. After the elimination of singular terms associated with the Fermi resonance, amplitude equations to describe the slow dynamics of vibrational energy transfer are derived, which recover the result obtained by a technique developed in nonlinear optics [S.J. Lade, Y.S. Kivshar, Phys. Lett. A 372 (2008) 1077].Comment: 11 page

    Development of Time- and Energy-Resolved Synchrotron-Radiation-Based Mössbauer Spectroscopy

    Get PDF
    14th International Conference on Synchrotron Radiation Instrumentation (SRI 2021) 28.03.2022 - 01.04.2022 OnlineSynchrotron-radiation based Mössbauer spectroscopy has become a useful technique capable for investigating various Mössbauer isotopes. For a typical experimental setup, the information associated with the pulse height (that is, energy) in an avalanche photodiode (APD) detector has not been used effectively. By using a system for simultaneous measurement system of time and energy associated with the APD signal, a system for the time- and energy-resolved Mössbauer spectroscopy has been developed. In this system, the pulse height information was converted to the time information through an amplitude-to-time converter applied to one of the divided signals from the APD. The corresponding time information was processed separately from another one of the divided signals. Both signals are recorded by a multi-channel scaler in an event-by-event data acquisition process. The velocity information from the Mössbauer transducer was also recorded as a tag for each signal event. Thus, the Mössbauer spectra with any time- and energy-window can be reconstructed after the data collection process. This system can be used for many purposes in time- and energy-resolved Mössbauer spectroscopy, and shows significant promise for use with other fast detectors and for various types of experiments

    The structural distortion in antiferromagnetic LaFeAsO investigated by a group-theoretical approach

    Full text link
    As experimentally well established, undoped LaFeAsO is antiferromagnetic below 137K with the magnetic moments lying on the Fe sites. We determine the orthorhombic body-centered group Imma (74) as the space group of the experimentally observed magnetic structure in the undistorted lattice, i.e., in a lattice possessing no structural distortions in addition to the magnetostriction. We show that LaFeAsO possesses a partly filled "magnetic band" with Bloch functions that can be unitarily transformed into optimally localized Wannier functions adapted to the space group Imma. This finding is interpreted in the framework of a nonadiabatic extension of the Heisenberg model of magnetism, the nonadiabatic Heisenberg model. Within this model, however, the magnetic structure with the space group Imma is not stable but can be stabilized by a (slight) distortion of the crystal turning the space group Imma into the space group Pnn2 (34). This group-theoretical result is in accordance with the experimentally observed displacements of the Fe and O atoms in LaFeAsO as reported by Clarina de la Cruz et al. [nature 453, 899 (2008)]
    corecore