48 research outputs found

    Functional genetic selection of Helix 66 in Escherichia coli 23S rRNA identified the eukaryotic-binding sequence for ribosomal protein L2

    Get PDF
    Ribosomal protein L2 is a highly conserved primary 23S rRNA-binding protein. L2 specifically recognizes the internal bulge sequence in Helix 66 (H66) of 23S rRNA and is localized to the intersubunit space through formation of bridge B7b with 16S rRNA. The L2-binding site in H66 is highly conserved in prokaryotic ribosomes, whereas the corresponding site in eukaryotic ribosomes has evolved into distinct classes of sequences. We performed a systematic genetic selection of randomized rRNA sequences in Escherichia coli, and isolated 20 functional variants of the L2-binding site. The isolated variants consisted of eukaryotic sequences, in addition to prokaryotic sequences. These results suggest that L2/L8e does not recognize a specific base sequence of H66, but rather a characteristic architecture of H66. The growth phenotype of the isolated variants correlated well with their ability of subunit association. Upon continuous cultivation of a deleterious variant, we isolated two spontaneous mutations within domain IV of 23S rRNA that compensated for its weak subunit association, and alleviated its growth defect, implying that functional interactions between intersubunit bridges compensate ribosomal function

    Ribosomal RNAs are tolerant toward genetic insertions: evolutionary origin of the expansion segments

    Get PDF
    Ribosomal RNAs (rRNAs), assisted by ribosomal proteins, form the basic structure of the ribosome, and play critical roles in protein synthesis. Compared to prokaryotic ribosomes, eukaryotic ribosomes contain elongated rRNAs with several expansion segments and larger numbers of ribosomal proteins. To investigate architectural evolution and functional capability of rRNAs, we employed a Tn5 transposon system to develop a systematic genetic insertion of an RNA segment 31 nt in length into Escherichia coli rRNAs. From the plasmid library harboring a single rRNA operon containing random insertions, we isolated surviving clones bearing rRNAs with functional insertions that enabled rescue of the E. coli strain (Δ7rrn) in which all chromosomal rRNA operons were depleted. We identified 51 sites with functional insertions, 16 sites in 16S rRNA and 35 sites in 23S rRNA, revealing the architecture of E. coli rRNAs to be substantially flexible. Most of the insertion sites show clear tendency to coincide with the regions of the expansion segments found in eukaryotic rRNAs, implying that eukaryotic rRNAs evolved from prokaryotic rRNAs suffering genetic insertions and selections

    Base methylations in the double-stranded RNA by a fused methyltransferase bearing unwinding activity

    Get PDF
    Modifications of rRNAs are clustered in functional regions of the ribosome. In Helix 74 of Escherichia coli 23S rRNA, guanosines at positions 2069 and 2445 are modified to 7-methylguanosine(m7G) and N2-methylguanosine(m2G), respectively. We searched for the gene responsible for m7G2069 formation, and identified rlmL, which encodes the methyltransferase for m2G2445, as responsible for the biogenesis of m7G2069. In vitro methylation of rRNA revealed that rlmL encodes a fused methyltransferase responsible for forming both m7G2069 and m2G2445. We renamed the gene rlmKL. The N-terminal RlmL activity for m2G2445 formation was significantly enhanced by the C-terminal RlmK. Moreover, RlmKL had an unwinding activity of Helix 74, facilitating cooperative methylations of m7G2069 and m2G2445 during biogenesis of 50S subunit. In fact, we observed that RlmKL was involved in the efficient assembly of 50S subunit in a mutant strain lacking an RNA helicase deaD

    The RNA acetyltransferase driven by ATP hydrolysis synthesizes N4-acetylcytidine of tRNA anticodon

    Get PDF
    The wobble base of Escherichia coli elongator tRNAMet is modified to N4-acetylcytidine (ac4C), which is thought to ensure the precise recognition of the AUG codon by preventing misreading of near-cognate AUA codon. By employing genome-wide screen of uncharacterized genes in Escherichia coli (‘ribonucleome analysis'), we found the ypfI gene, which we named tmcA (tRNAMet cytidine acetyltransferase), to be responsible for ac4C formation. TmcA is an enzyme that contains a Walker-type ATPase domain in its N-terminal region and an N-acetyltransferase domain in its C-terminal region. Recombinant TmcA specifically acetylated the wobble base of E. coli elongator tRNAMet by utilizing acetyl-coenzyme A (CoA) and ATP (or GTP). ATP/GTP hydrolysis by TmcA is stimulated in the presence of acetyl-CoA and tRNAMet. A mutation study revealed that E. coli TmcA strictly discriminates elongator tRNAMet from the structurally similar tRNAIle by mainly recognizing the C27–G43 pair in the anticodon stem. Our findings reveal an elaborate mechanism embedded in tRNAMet and tRNAIle for the accurate decoding of AUA/AUG codons on the basis of the recognition of wobble bases by the respective RNA-modifying enzymes
    corecore