7 research outputs found

    Modulation Doping via a 2d Atomic Crystalline Acceptor

    Full text link
    Two-dimensional (2d) nano-electronics, plasmonics, and emergent phases require clean and local charge control, calling for layered, crystalline acceptors or donors. Our Raman, photovoltage, and electrical conductance measurements combined with \textit{ab initio} calculations establish the large work function and narrow bands of α\alpha-RuCl3_3 enable modulation doping of exfoliated, chemical vapor deposition (CVD), and molecular beam epitaxy (MBE) materials. Short-ranged lateral doping (≤65 nm{\leq}65\ \text{nm}) and high homogeneity are achieved in proximate materials with a single layer of \arucl. This leads to the highest monolayer graphene (mlg) mobilities ($4,900\ \text{cm}^2/ \text{Vs})atthesehighholedensities() at these high hole densities (3\times10^{13}\ \text{cm}^{-2});andyieldslargerchargetransfertobilayergraphene(blg)(); and yields larger charge transfer to bilayer graphene (blg) (6\times10^{13}\ \text{cm}^{-2}$). We further demonstrate proof of principle optical sensing, control via twist angle, and charge transfer through hexagonal boron nitride (hBN)

    Deep-Learning-Enabled Fast Optical Identification and Characterization of Two-Dimensional Materials

    Full text link
    Advanced microscopy and/or spectroscopy tools play indispensable role in nanoscience and nanotechnology research, as it provides rich information about the growth mechanism, chemical compositions, crystallography, and other important physical and chemical properties. However, the interpretation of imaging data heavily relies on the "intuition" of experienced researchers. As a result, many of the deep graphical features obtained through these tools are often unused because of difficulties in processing the data and finding the correlations. Such challenges can be well addressed by deep learning. In this work, we use the optical characterization of two-dimensional (2D) materials as a case study, and demonstrate a neural-network-based algorithm for the material and thickness identification of exfoliated 2D materials with high prediction accuracy and real-time processing capability. Further analysis shows that the trained network can extract deep graphical features such as contrast, color, edges, shapes, segment sizes and their distributions, based on which we develop an ensemble approach topredict the most relevant physical properties of 2D materials. Finally, a transfer learning technique is applied to adapt the pretrained network to other applications such as identifying layer numbers of a new 2D material, or materials produced by a different synthetic approach. Our artificial-intelligence-based material characterization approach is a powerful tool that would speed up the preparation, initial characterization of 2D materials and other nanomaterials and potentially accelerate new material discoveries

    Graphene-Based Environmental Sensors: Electrical and Optical Devices

    No full text
    In this review paper, we summarized the recent progress of using graphene as a sensing platform for environmental applications. Especially, we highlight the electrical and optical sensing devices developed based on graphene and its derivatives. We discussed the role of graphene in these devices, the sensing mechanisms, and the advantages and disadvantages of specific devices. The approaches to improve the sensitivity and selectivity are also discussed

    Synthesis of 2D layered transition metal (Ni, Co) hydroxides via edge-on condensation

    No full text
    Abstract Layered transition metal hydroxides (LTMHs) with transition metal centers sandwiched between layers of coordinating hydroxide anions have attracted considerable interest for their potential in developing clean energy sources and storage technologies. However, two-dimensional (2D) LTMHs remain largely understudied in terms of physical properties and applications in electronic devices. Here, for the first time we report > 20 μm α-Ni(OH)2 2D crystals, synthesized from hydrothermal reaction. And an edge-on condensation mechanism assisted with the crystal field geometry is proposed to understand the 2D intra-planar growth of the crystals, which is also testified through series of systematic comparative studies. We also report the successful synthesis of 2D Co(OH)2 crystals (> 40 μm) with more irregular shape due to the slightly distorted octahedral geometry of the crystal field. Moreover, the detailed structural characterization of synthesized α-Ni(OH)2 are performed. The optical band gap energy is extrapolated as 2.54 eV from optical absorption measurements and the electronic bandgap is measured as 2.52 eV from reflected electrons energy loss spectroscopy (REELS). We further demonstrate its potential as a wide bandgap (WBG) semiconductor for high voltage operation in 2D electronics with a high breakdown strength, 4.77 MV/cm with 4.9 nm thickness. The successful realization of the 2D LTMHs opens the door for future exploration of more fundamental physical properties and device applications

    Chemical and Bio Sensing Using Graphene-Enhanced Raman Spectroscopy

    No full text
    Graphene is a two-dimensional (2D) material consisting of a single sheet of sp2 hybridized carbon atoms laced in a hexagonal lattice, with potentially wide usage as a Raman enhancement substrate, also termed graphene-enhanced Raman scattering (GERS), making it ideal for sensing applications. GERS improves upon traditional surface-enhanced Raman scattering (SERS), combining its single-molecule sensitivity and spectral fingerprinting of molecules, and graphene’s simple processing and superior uniformity. This enables fast and highly sensitive detection of a wide variety of analytes. Accordingly, GERS has been investigated for a wide variety of sensing applications, including chemical- and bio-sensing. As a derivative of GERS, the use of two-dimensional materials other than graphene for Raman enhancement has emerged, which possess remarkably interesting properties and potential wider applications in combination with GERS. In this review, we first introduce various types of 2D materials, including graphene, MoS2, doped graphene, their properties, and synthesis. Then, we describe the principles of GERS and comprehensively explain how the GERS enhancement factors are influenced by molecular and 2D material properties. In the last section, we discuss the application of GERS in chemical- and bio-sensing, and the prospects of such a novel sensing method

    Anomalous Phonon Modes in Black Phosphorus Revealed by Resonant Raman Scattering

    No full text
    Black phosphorus (BP), a layered material with puckered crystalline structure in each layer, has drawn intense interest due to its unique optical and electronic properties. In particular, the intricate Raman scattering effect in BP is intriguing and provides a platform for researchers to probe the physical properties of BP in depth. Here we report the first observation of anomalous modes with the frequency in the range of 100–900 cm<sup>–1</sup> in BP due to the resonant Raman effect. The origin and assignment of the anomalous modes are discussed based on the excitation energy- and angle-dependent Raman measurements. Density functional theory (DFT) calculated electronic band structure is used to support our understanding. The newly observed phonon modes could serve as a unique probe for the fine electronic structures and the exciton–phonon couplings, which promote a better understanding of BP for potential nanoelectronic and nanophotonic applications in the future
    corecore