1,339 research outputs found
Effects of Alloying Elements and Cold Work on the Redistribution of Hydrogen in Zirconium under a Temperature Gradient
Effects of alloying elements (beryllium, hafnium, niobium, tin and yttrium) and of cold-swaging on the redistribution of hydrogen in zirconium with various initial hydrogen concentrations have been examined after anneals under given temperature differences. For low hydrogen concentration, the alloying elements did not greatly affect the value of the heat of transport, except for the beta-martensite Zr/1 wt% Nb alloy which showed a low value. Cold-swaging enhanced the migration of hydrogen toward the cold end. The heat of transport of the worked specimens could not be calculated accurately. For high hydrogen concentration, the α/(α+δ) interface moved toward the cold end. As the initial concentrations were different from alloy to alloy, a normalization process was employed. The resulting comparison showed that niobium accelerated the movement of the interface. This was attributed to the fine grain size of the alloy. The movement of the interface was also enhanced by cold-swaging which probably produced many defects and elongated grain boundaries along the temperature gradient, thereby accelerating diffusion of hydrogen toward the cold end
Can Gravitational Waves Prevent Inflation?
To investigate the cosmic no hair conjecture, we analyze numerically
1-dimensional plane symmetrical inhomogeneities due to gravitational waves in
vacuum spacetimes with a positive cosmological constant. Assuming periodic
gravitational pulse waves initially, we study the time evolution of those waves
and the nature of their collisions. As measures of inhomogeneity on each
hypersurface, we use the 3-dimensional Riemann invariant and the electric and magnetic parts of
the Weyl tensor. We find a temporal growth of the curvature in the waves'
collision region, but the overall expansion of the universe later overcomes
this effect. No singularity appears and the result is a ``no hair" de Sitter
spacetime. The waves we study have amplitudes between and widths between ,
where , the horizon scale of de Sitter spacetime. This
supports the cosmic no hair conjecture.Comment: LaTeX, 11 pages, 3 figures are available on request <To
[email protected] (Hisa-aki SHINKAI)>, WU-AP/29/9
{\it Ab initio} calculations of magnetic structure and lattice dynamics of Fe/Pt multilayers
The magnetization distribution, its energetic characterization by the
interlayer coupling constants and lattice dynamics of (001)-oriented Fe/Pt
multilayers are investigated using density functional theory combined with the
direct method to determine phonon frequencies. It is found that ferromagnetic
order between consecutive Fe layers is favoured, with the enhanced magnetic
moments at the interface. The bilinear and biquadratic coupling coefficients
between Fe layers are shown to saturate fast with increasing thickness of
nonmagnetic Pt layers which separate them. The phonon calculations demonstrate
a rather strong dependence of partial iron phonon densities of states on the
actual position of Fe monolayer in the multilayer structure.Comment: 7 pages, 8 figure
Cosmology with positive and negative exponential potentials
We present a phase-plane analysis of cosmologies containing a scalar field
with an exponential potential
where and may be positive or negative. We show that
power-law kinetic-potential scaling solutions only exist for sufficiently flat
() negative
potentials. The latter correspond to a class of ever-expanding cosmologies with
negative potential. However we show that these expanding solutions with a
negative potential are to unstable in the presence of ordinary matter, spatial
curvature or anisotropic shear, and generic solutions always recollapse to a
singularity. Power-law kinetic-potential scaling solutions are the late-time
attractor in a collapsing universe for steep negative potentials (the ekpyrotic
scenario) and stable against matter, curvature or shear perturbations.
Otherwise kinetic-dominated solutions are the attractor during collapse (the
pre big bang scenario) and are only marginally stable with respect to
anisotropic shear.Comment: 8 pages, latex with revtex, 9 figure
Study of blind thrust faults underlying Tokyo and Osaka urban areas using a combination of high-resolution seismic reflection profiling and continuous coring
We acquired high-resolution seismic reflection profiles and continuously cored boreholes to evaluate active flexures
produced by major blind thrust fault systems within two densely populated Neogene-Quaternary sedimentary
basins in Japan: the Fukaya Fault System near Tokyo in the Kanto Basin and the Uemachi Fault System in
the Osaka Basin. The high-resolution seismic reflection survey made clear the length, geometry and growth history
of fault-related folds, or flexures formed above the two blind thrusts. Continuously cored boreholes linked
with high-resolution seismic profiles enabled us to estimate the uplift rate as defined by shallow stratigraphic
horizons and constrain the age of the most recent growth of the flexures during earthquakes on the Fukaya and
Uemachi fault systems. Even with the high quality of the data we collected, it is still not possible to exactly constrain
the age of the most recent blind thrust earthquake recorded by flexure of these fault-related folds. Data
presented in this paper form the basis for future efforts aimed at mechanical and kinematic models for fault
growth to evaluate the activity of blind thrusts underlying urban areas
Energy Density of Non-Minimally Coupled Scalar Field Cosmologies
Scalar fields coupled to gravity via in arbitrary
Friedmann-Robertson-Walker backgrounds can be represented by an effective flat
space field theory. We derive an expression for the scalar energy density where
the effective scalar mass becomes an explicit function of and the scale
factor. The scalar quartic self-coupling gets shifted and can vanish for a
particular choice of . Gravitationally induced symmetry breaking and
de-stabilization are possible in this theory.Comment: 18 pages in standard Late
Accelerated cosmological expansion due to a scalar field whose potential has a positive lower bound
In many cases a nonlinear scalar field with potential can lead to
accelerated expansion in cosmological models. This paper contains mathematical
results on this subject for homogeneous spacetimes. It is shown that, under the
assumption that has a strictly positive minimum, Wald's theorem on
spacetimes with positive cosmological constant can be generalized to a wide
class of potentials. In some cases detailed information on late-time
asymptotics is obtained. Results on the behaviour in the past time direction
are also presented.Comment: 16 page
Anisotropic Power-law Inflation
We study an inflationary scenario in supergravity model with a gauge kinetic
function. We find exact anisotropic power-law inflationary solutions when both
the potential function for an inflaton and the gauge kinetic function are
exponential type. The dynamical system analysis tells us that the anisotropic
power-law inflation is an attractor for a large parameter region.Comment: 14 pages, 1 figure. References added, minor corrections include
Attractor Solution of Phantom Field
In light of recent study on the dark energy models that manifest an equation
of state , we investigate the cosmological evolution of phantom field in
a specific potential, exponential potential in this paper. The phase plane
analysis show that the there is a late time attractor solution in this model,
which address the similar issues as that of fine tuning problems in
conventional quintessence models. The equation of state is determined by
the attractor solution which is dependent on the parameter in the
potential. We also show that this model is stable for our present observable
universe.Comment: 9 pages, 3 ps figures; typos corrected, references updated, this is
the final version to match the published versio
Tunneling and propagation of vacuum bubbles on dynamical backgrounds
In the context of bubble universes produced by a first-order phase transition
with large nucleation rates compared to the inverse dynamical time scale of the
parent bubble, we extend the usual analysis to non-vacuum backgrounds. In
particular, we provide semi-analytic and numerical results for the modified
nucleation rate in FLRW backgrounds, as well as a parameter study of bubble
walls propagating into inhomogeneous (LTB) or FLRW spacetimes, both in the
thin-wall approximation. We show that in our model, matter in the background
often prevents bubbles from successful expansion and forces them to collapse.
For cases where they do expand, we give arguments why the effects on the
interior spacetime are small for a wide range of reasonable parameters and
discuss the limitations of the employed approximations.Comment: 29 pages, 8 figures, typos corrected, matches published versio
- …