3,341 research outputs found

    Theory of Flux-Flow Resistivity near Hc2H_{c2} for s-wave Type-II Superconductors

    Full text link
    This paper presents a microscopic calculation of the flux-flow resistivity ρf\rho_{f} for s-wave type-II superconductors with arbitrary impurity concentrations near the upper critical field Hc2H_{c2}. It is found that, as the mean free path ll becomes longer, ρf\rho_{f} increases gradually from the dirty-limit result of Thompson [Phys. Rev. B{\bf 1}, 327 (1970)] and Takayama and Ebisawa [Prog. Theor. Phys. {\bf 44}, 1450 (1970)]. The limiting behaviors suggest that ρf(H)\rho_{f}(H) at low temperatures may change from convex downward to upward as ll increases, thus deviating substantially from the linear dependence ρfH/Hc2\rho_{f}\propto H/H_{c2} predicted by the Bardeen-Stephen theory [Phys. Rev. {\bf 140}, A1197 (1965)]

    Gap Anisotropy and de Haas-van Alphen Effect in Type-II Superconductors

    Full text link
    We present a theoretical study on the de Haas-van Alphen (dHvA) oscillation in the vortex state of type-II superconductors, with a special focus on the connection between the gap anisotropy and the oscillation damping. Numerical calculations for three different gap structures clearly indicate that the average gap along extremal orbits is relevant for the magnitude of the extra damping, thereby providing a support for experimental efforts to probe gap anisotropy through the dHvA signal. We also derive an analytic formula for the extra damping which gives a good fit to the numerical results.Comment: 5 pages, 1 figure, changes in Introductio

    Spatially resolved electronic structure of an isovalent nitrogen center in GaAs

    Get PDF
    Small numbers of nitrogen dopants dramatically modify the electronic properties of GaAs, generating very large shifts in the conduction-band energies with nonlinear concentration dependence, and impurity-associated spatially-localized resonant states within the conduction band. Cross-sectional scanning tunneling microscopy provides the local electronic structure of single nitrogen dopants at the (110) GaAs surface, yielding highly anisotropic spatial shapes when the empty states are imaged. Measurements of the resonant states relative to the GaAs surface states and their spatial extent allow an unambiguous assignment of specific features to nitrogen atoms at different depths below the cleaved (110) surface. Multiband tight binding calculations around the resonance energy of nitrogen in the conduction band match the imaged features. The spatial anisotropy is attributed to the tetrahedral symmetry of the bulk lattice. Additionally, the voltage dependence of the electronic contrast for two features in the filled state imaging suggest these features could be related to a locally modified surface state

    Properties of Nambu-Goldstone Bosons in a Single-Component Bose-Einstein Condensate

    Full text link
    We theoretically study the properties of Nambu-Goldstone bosons in an interacting single-component Bose-Einstein condensate (BEC). We first point out that the proofs of Goldstone's theorem by Goldstone, et al. [Phys. Rev. {\bf 127} (1962) 965] may be relevant to distinct massless modes of the BEC: whereas the first proof deals with the poles of the single-particle Green's function G^\hat{G}, the second one concerns those of the two-particle Green's function. Thus, there may be multiple Nambu-Goldstone bosons even in the single-component BEC with broken U(1) symmetry. The second mode turns out to have an infinite lifetime in the long-wavelength limit in agreement with the conventional viewpoint. In contrast, the first mode from G^\hat{G}, i.e., the Bogoliubov mode in the weak-coupling regime, is shown to be a "bubbling" mode fluctuating temporally out of and back into the condensate. The substantial lifetime originates from an "improper" structure of the self-energy inherent in the BEC, which has been overlooked so far and will be elucidated here, and removes various infrared divergences pointed out previously.Comment: 9 pages, 6 gigure

    Critical light scattering in liquids

    Full text link
    We compare theoretical results for the characteristic frequency of the Rayleigh peak calculated in one-loop order within the field theoretical method of the renormalization group theory with experiments and other theoretical results. Our expressions describe the non-asymptotic crossover in temperature, density and wave vector. In addition we discuss the frequency dependent shear viscosity evaluated within the same model and compare our theoretical results with recent experiments in microgravity.Comment: 17 pages, 12 figure

    Entropy and Spin Susceptibility of s-wave Type-II Superconductors near Hc2H_{c2}

    Get PDF
    A theoretical study is performed on the entropy SsS_{\rm s} and the spin susceptibility χs\chi_{\rm s} near the upper critical field Hc2H_{c2} of s-wave type-II superconductors with arbitrary impurity concentrations. The changes of these quantities through Hc2H_{c2} may be expressed as [Ss(T,B)Ss(T,0)]/[Sn(T)Ss(T,0)]=1αS(1B/Hc2)(B/Hc2)αS[S_{\rm s}(T,B)-S_{\rm s}(T,0)]/[S_{\rm n}(T)-S_{\rm s}(T,0)]=1-\alpha_{S}(1-B/H_{c2})\approx (B/H_{c2})^{\alpha_{S}}, for example, where BB is the average flux density and SnS_{\rm n} denotes entropy in the normal state. It is found that the slopes αS\alpha_{S} and αχ\alpha_{\chi} at T=0 are identical, connected directly with the zero-energy density of states, and vary from 1.72 in the dirty limit to 0.50.60.5\sim 0.6 in the clean limit. This mean-free-path dependence of αS\alpha_{S} and αχ\alpha_{\chi} at T=0 is quantitatively the same as that of the slope αρ(T=0)\alpha_{\rho}(T=0) for the flux-flow resistivity studied previously. The result suggests that Ss(B)S_{\rm s}(B) and χs(B)\chi_{\rm s}(B) near T=0 are convex downward (upward) in the dirty (clean) limit, deviating substantially from the linear behavior B/Hc2\propto B/H_{c2}. The specific-heat jump at Hc2H_{c2} also shows fairly large mean-free-path dependence.Comment: 8 pages, 5 figure

    R32 As a Solution for Energy Conservation and Low Emission

    Get PDF

    Quasiparticles of d-wave superconductors in finite magnetic fields

    Full text link
    We study quasiparticles of d-wave superconductors in the vortex lattice by self-consistently solving the Bogoliubov-de Gennes equations. It is found for a pure dx2y2d_{x^2-y^2} state that: (i) low-energy quasiparticle bands in the magnetic Brillouin zone have rather large dispersion even in low magnetic fields, indicating absense of bound states for an isolated vortex; (ii) in finite fields with kFξ0k_F \xi_0 small, the calculated tunneling conductance at the vortex core shows a double-peak structure near zero bias, as qualitatively consistent with the STM experiment by Maggio-Aprile et al. [Phys. Rev. Lett. {\bf 75} (1995) 2754]. We also find that mixing of a dxyd_{xy}- or an s-wave component, if any, develops gradually without transitions as the field is increased, having little effect on the tunneling spectra.Comment: 4 pages, 4 figures, LaTe

    Self-Consistent Approximations for Superconductivity beyond the Bardeen-Cooper-Schrieffer Theory

    Full text link
    We develop a concise self-consistent perturbation expansion for superconductivity where all the pair processes are naturally incorporated without drawing "anomalous" Feynman diagrams. This simplification results from introducing an interaction vertex that is symmetric in the particle-hole indices besides the ordinary space-spin coordinates. The formalism automatically satisfies conservation laws, includes the Luttinger-Ward theory as the normal-state limit, and reproduces the Bardeen-Cooper-Schrieffer theory as the lowest-order approximation. It enables us to study the thermodynamic, single-particle, two-particle, and dynamical properties of superconductors with competing fluctuations based on a single functional Φ[G^]\Phi[\hat{G}] of Green's function G^\hat{G} in the Nambu space. Specifically, we derive closed equations in the FLEX-S approximation, i.e., the fluctuation exchange approximation for superconductivity with all the pair processes, which contains extra terms besides those in the standard FLEX approximation.Comment: 14 pages, 6 figure
    corecore