59 research outputs found

    Worm-like carbon shell chains produced from wood

    Get PDF
    Large-scale utilization of wood which command absolute majority in biomass for functional carbon precursors contributes to reduce greenhouse effect. Wood char generally has a limit on material usage because of its non-graphitic structure^1^, so we developed a new functional wood char by iron-, or nickel-catalyzed carbonization, which has a graphite-like structure with mesopores good for electroconductivity and liquid phase adsorption capacity for macro molecules^2-5^. However the fine structure of the wood char is still not clear. Here we report more than 70 wt % of iron-catalyzed wood char is filled with chained carbon shells formed by 3~20 defective stacking layers of carbon hexagonal planes, which look like nanometer-sized worms swarm. We name them "carbon shell chains". The discussion of the formation mechanism reveals that the wood cell wall plays an important role for their efficient production. They are stable at 1800 ºC under vacuum, but in air, burn under 600 ºC, and are perfectly conversed into hydrogen and carbon monoxide in a short time by steam at 900 ºC. The control of their decomposition will bring out a new talent in the wood char as a big source of supply for nano-graphite or nano-graphene, for which nanometer size and edge effects have recently attracted considerable attention^6^. In addition, a simple and easy preparation of carbon shell chains implies that they may be naturally produced on or in the earth rich in iron, and might be misinterpreted as nano-worms, though most of them may decompose into organic gases

    Dual CRISPR-Cas3 system for inducing multi-exon skipping in DMD patient-derived iPSCs

    Get PDF
    DMD患者さん由来iPS細胞で複数のエクソンスキッピングを誘導するデュアルCRISPR-Cas3システムの開発. 京都大学プレスリリース. 2023-08-25.Exploring New Avenues in DMD Treatment: CRISPR-Cas3's Multi-Exon Skipping Approach. 京都大学プレスリリース. 2023-08-28.To restore dystrophin protein in various mutation patterns of Duchenne muscular dystrophy (DMD), the multi-exon skipping (MES) approach has been investigated. However, only limited techniques are available to induce a large deletion to cover the target exons spread over several hundred kilobases. Here, we utilized the CRISPR-Cas3 system for MES induction and showed that dual crRNAs could induce a large deletion at the dystrophin exon 45–55 region (∼340 kb), which can be applied to various types of DMD patients. We developed a two-color SSA-based reporter system for Cas3 to enrich the genome-edited cell population and demonstrated that MES induction restored dystrophin protein in DMD-iPSCs with three distinct mutations. Whole-genome sequencing and distance analysis detected no significant off-target deletion near the putative crRNA binding sites. Altogether, dual CRISPR-Cas3 is a promising tool to induce a gigantic genomic deletion and restore dystrophin protein via MES induction

    Detection of deviance in Japanese kanji compound words

    Get PDF
    Reading fluency is based on the automatic visual recognition of words. As a manifestation of the automatic processing of words, an automatic deviance detection of visual word stimuli can be observed in the early stages of visual recognition. To clarify whether this phenomenon occurs with Japanese kanji compounds-since their lexicality is related to semantic association-we investigated the brain response by utilizing three types of deviants: differences in font type, lexically correct or incorrect Japanese kanji compound words and pseudo-kanji characters modified from correct and incorrect compounds. We employed magnetoencephalography (MEG) to evaluate the spatiotemporal profiles of the related brain regions. The study included 22 adult native Japanese speakers (16 females). The abovementioned three kinds of stimuli containing 20% deviants were presented during the MEG measurement. Activity in the occipital pole region of the brain was observed upon the detection of font-type deviance within 250 ms of stimulus onset. Although no significant activity upon detecting lexically correct/incorrect kanji compounds or pseudo-kanji character deviations was observed, the activity in the posterior transverse region of the collateral sulcus (pCoS)-which is a fusiform neighboring area-was larger when detecting lexically correct kanji compounds than when detecting pseudo-kanji characters. Taken together, these results support the notion that the automatic detection of deviance in kanji compounds may be limited to a low-level feature, such as the stimulus stroke thickness.Peer reviewe

    Parental legacy and regulatory novelty in Brachypodium diurnal transcriptomes accompanying their polyploidy

    Get PDF
    Polyploidy is a widespread phenomenon in eukaryotes that can lead to phenotypic novelty and has important implications for evolution and diversification. The modification of phenotypes in polyploids relative to their diploid progenitors may be associated with altered gene expression. However, it is largely unknown how interactions between duplicated genes affect their diurnal expression in allopolyploid species. In this study, we explored parental legacy and hybrid novelty in the transcriptomes of an allopolyploid species and its diploid progenitors. We compared the diurnal transcriptomes of representative Brachypodium cytotypes, including the allotetraploid Brachypodium hybridum and its diploid progenitors Brachypodium distachyon and Brachypodium stacei. We also artificially induced an autotetraploid B. distachyon. We identified patterns of homoeolog expression bias (HEB) across Brachypodium cytotypes and time-dependent gain and loss of HEB in B. hybridum. Furthermore, we established that many genes with diurnal expression experienced HEB, while their expression patterns and peak times were correlated between homoeologs in B. hybridum relative to B. distachyon and B. stacei, suggesting diurnal synchronization of homoeolog expression in B. hybridum. Our findings provide insight into the parental legacy and hybrid novelty associated with polyploidy in Brachypodium, and highlight the evolutionary consequences of diurnal transcriptional regulation that accompanied allopolyploidy

    Skeletal Myoblast Cells Enhance the Function of Transplanted Islets in Diabetic Mice

    Get PDF
    Kado T., Tomimaru Y., Kobayashi S., et al. Skeletal Myoblast Cells Enhance the Function of Transplanted Islets in Diabetic Mice. Journal of Diabetes Research 2024, 5574968 (2024); https://doi.org/10.1155/2024/5574968.Islet transplantation (ITx) is an established and safe alternative to pancreas transplantation for type 1 diabetes mellitus (T1DM) patients. However, most ITx recipients lose insulin independence by 3 years after ITx due to early graft loss, such that multiple donors are required to achieve insulin independence. In the present study, we investigated whether skeletal myoblast cells could be beneficial for promoting angiogenesis and maintaining the differentiated phenotypes of islets. In vitro experiments showed that the myoblast cells secreted angiogenesis-related cytokines (vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), and stromal-derived factor-1α (SDF-1α)), contributed to maintenance of differentiated islet phenotypes, and enhanced islet cell insulin secretion capacity. To verify these findings in vivo, we transplanted islets alone or with myoblast cells under the kidney capsule of streptozotocin-induced diabetic mice. Compared with islets alone, the group bearing islets with myoblast cells had a significantly lower average blood glucose level. Histological examination revealed that transplants with islets plus myoblast cells were associated with a significantly larger insulin-positive area and significantly higher number of CD31-positive microvessels compared to islets alone. Furthermore, islets cotransplanted with myoblast cells showed JAK-STAT signaling activation. Our results suggest two possible mechanisms underlying enhancement of islet graft function with myoblast cells cotransplantation: "indirect effects"mediated by angiogenesis and "direct effects"of myoblast cells on islets via the JAK-STAT cascade. Overall, these findings suggest that skeletal myoblast cells enhance the function of transplanted islets, implying clinical potential for a novel ITx procedure involving myoblast cells for patients with diabetes

    Memory Immune Responses against Pandemic (H1N1) 2009 Influenza Virus Induced by a Whole Particle Vaccine in Cynomolgus Monkeys Carrying Mafa-A1*052∶02

    Get PDF
    We made an H1N1 vaccine candidate from a virus library consisting of 144 ( = 16 HA×9 NA) non-pathogenic influenza A viruses and examined its protective effects against a pandemic (2009) H1N1 strain using immunologically naïve cynomolgus macaques to exclude preexisting immunity and to employ a preclinical study since preexisting immunity in humans previously vaccinated or infected with influenza virus might make comparison of vaccine efficacy difficult. Furthermore, macaques carrying a major histocompatibility complex class I molecule, Mafa-A1*052∶02, were used to analyze peptide-specific CD8+ T cell responses. Sera of macaques immunized with an inactivated whole particle formulation without addition of an adjuvant showed higher neutralization titers against the vaccine strain A/Hokkaido/2/1981 (H1N1) than did sera of macaques immunized with a split formulation. Neutralization activities against the pandemic strain A/Narita/1/2009 (H1N1) in sera of macaques immunized twice with the split vaccine reached levels similar to those in sera of macaques immunized once with the whole particle vaccine. After inoculation with the pandemic virus, the virus was detected in nasal samples of unvaccinated macaques for 6 days after infection and for 2.67 days and 5.33 days on average in macaques vaccinated with the whole particle vaccine and the split vaccine, respectively. After the challenge infection, recall neutralizing antibody responses against the pandemic virus and CD8+ T cell responses specific for nucleoprotein peptide NP262-270 bound to Mafa-A1*052∶02 in macaques vaccinated with the whole particle vaccine were observed more promptly or more vigorously than those in macaques vaccinated with the split vaccine. These findings demonstrated that the vaccine derived from our virus library was effective for pandemic virus infection in macaques and that the whole particle vaccine conferred more effective memory and broader cross-reactive immune responses to macaques against pandemic influenza virus infection than did the split vaccine

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Characterization of Psychrotrophic Bacteria in the Surface and Deep-Sea Waters from the Northwestern Pacific Ocean Based on 16S Ribosomal DNA Analysis

    Get PDF
    Seventy-eight 4°C-culturable bacteria were isolated using ZoBell 2216E medium from surface (0–200 m) and deep-sea (1000–9671 m) waters in the northwestern Pacific Ocean. Growth studies indicated that all 4°C-culturable bacteria were psychrotrophs. Six phylotypes were observed in the surface water samples and 8 phylotypes in the deep-sea waters. Phylogenetic characterization based on 16S ribosomal DNA sequence analysis of the representative phylotypes revealed that some bacterial genera, Pseudoalteromonas, Photobacterium, and Vibrio, were common to surface and deep-sea waters, and others, Pseudomonas and Halomonas, specifically occurred in surface water. Overall, the members of Vibrionaceae appear to be dominant in both habitats
    corecore