214 research outputs found
Spectroscopic signatures of spin-charge separation in the quasi-one-dimensional organic conductor TTF-TCNQ
The electronic structure of the quasi-one-dimensional organic conductor
TTF-TCNQ is studied by angle-resolved photoelectron spectroscopy (ARPES). The
experimental spectra reveal significant discrepancies to band theory. We
demonstrate that the measured dispersions can be consistently mapped onto the
one-dimensional Hubbard model at finite doping. This interpretation is further
supported by a remarkable transfer of spectral weight as function of
temperature. The ARPES data thus show spectroscopic signatures of spin-charge
separation on an energy scale of the conduction band width.Comment: 4 pages, 4 figures; to appear in PR
Electronic structure of the quasi-one-dimensional organic conductor TTF-TCNQ
We study the electronic structure of the quasi-one-dimensional organic
conductor TTF-TCNQ by means of density-functional band theory, Hubbard model
calculations, and angle-resolved photoelectron spectroscopy (ARPES). The
experimental spectra reveal significant quantitative and qualitative
discrepancies to band theory. We demonstrate that the dispersive behavior as
well as the temperature-dependence of the spectra can be consistently explained
by the finite-energy physics of the one-dimensional Hubbard model at metallic
doping. The model description can even be made quantitative, if one accounts
for an enhanced hopping integral at the surface, most likely caused by a
relaxation of the topmost molecular layer. Within this interpretation the ARPES
data provide spectroscopic evidence for the existence of spin-charge separation
on an energy scale of the conduction band width. The failure of the
one-dimensional Hubbard model for the {\it low-energy} spectral behavior is
attributed to interchain coupling and the additional effect of electron-phonon
interaction.Comment: 18 pages, 9 figure
Surface characterization and surface electronic structure of organic quasi-one-dimensional charge transfer salts
We have thoroughly characterized the surfaces of the organic charge-transfer
salts TTF-TCNQ and (TMTSF)2PF6 which are generally acknowledged as prototypical
examples of one-dimensional conductors. In particular x-ray induced
photoemission spectroscopy turns out to be a valuable non-destructive
diagnostic tool. We show that the observation of generic one-dimensional
signatures in photoemission spectra of the valence band close to the Fermi
level can be strongly affected by surface effects. Especially, great care must
be exercised taking evidence for an unusual one-dimensional many-body state
exclusively from the observation of a pseudogap.Comment: 11 pages, 12 figures, v2: minor changes in text and figure labellin
- …