97 research outputs found

    Determination of component concentrations in models of exhaled air samples using principal component analysis and canonical correlation analysis

    Get PDF
    We consider the problem of finding concentrations of molecular gases in the models of exhaled air samples in terms of their absorption spectra. We introduce model spectra describing the exhaled air samples as linear combinations of the absorption spectra of individual molecular gases with given coefficients. The absorption spectra are calculated on the basis of the database HITRAN. The concentrations are determined using Principal Component Analysis and Canonical Correlation Analysis

    Kalman filtering in the problem of noise reduction in the absorption spectra of exhaled air

    Get PDF
    We examined possibilities of the Kalman filter for reducing the noise effects in the analysis of absorption spectra of gas samples, in particular, for samples of the exhaled air. It has been shown that when comparing groups of patients with broncho-pulmonary diseases on the basis of the absorption spectra analysis of exhaled air samples the data preprocessing with the Kalman filtering can improve the classification sensitivity using a support vector kernel with mpl

    Possibilities of laser spectroscopy for monitoring the profile dynamics of the volatile metabolite in exhaled air

    Get PDF
    In this work we studied applicability of the laser spectroscopy for fixing differences in composition of exhaled air depending on the position of the body in different physical states. Using principal component analysis we show that the use of the laser spectroscopy methods is sufficiently effective to solve this problem and provide additional opportunities for the comprehensive study of the human condition

    The classification of the patients with pulmonary diseases using breath air samples spectral analysis

    Get PDF
    Technique of exhaled breath sampling is discussed. The procedure of wavelength auto-calibration is proposed and tested. Comparison of the experimental data with the model absorption spectra of 5% CO2 is conducted. The classification results of three study groups obtained by using support vector machine and principal component analysis methods are presented

    Classification of patients with broncho-pulmonary diseases based on analysis of absorption spectra of exhaled air samples with SVM and neural network algorithm application

    Get PDF
    In this work results of classification of patients with broncho-pulmonary diseases based on analysis of exhaled air samples are presented. These results obtained by application of laser photoacoustic spectroscopy method and intellectual data analysis ones (Principal Component Analysis, Support vector machines, neural networks). Absorption spectra of exhaled air of gathered volunteers were registered; data preparation for classification procedure of absorption spectra of exhaled air of healthy and sick people was made. Also error matrices for neural networks and sensitivity/specificity values in case of classification with SVM method were obtained. This work was partially supposed by the Federal Target Program for Research and Development, Contract No. 14.578.21.0082 (unique identifier of applied scientific research and experimental development RFMEFI57814X0082)

    Diagnostics of oral lichen planus based on analysis of volatile organic compounds in saliva

    Get PDF
    The ability of diagnostics of oral lichen planus (OLP) based on spectral analysis of saliva using the THz spectroscopy is presented. The study included 8 patients with clinically proven OLP. The comparison group consisted of 8 healthy volunteers. Absorption spectra of the saliva was measured using time-domain spectrometer T-spec (EXPLA) in the range 0.2-3THz and have been considered as the feature vectors of the state. The spatial distribution of the objects under study in the feature space was analyzed using principle component analysis. The groups under study were shown to separate in full. Thus, the saliva analysis by the THz spectroscopy technique can be potentially used as a method of noninvasive diagnostics of the OLP

    Predictive models for COVID-19 detection using routine blood tests and machine learning

    Get PDF
    The problem of accurate, fast, and inexpensive COVID-19 tests has been urgent till now. Standard COVID-19 tests need high-cost reagents and specialized laboratories with high safety requirements, are time-consuming. Data of routine blood tests as a base of SARS-CoV-2 invasion detection allows using the most practical medicine facilities. But blood tests give general information about a patient’s state, which is not directly associated with COVID-19. COVID-19-specific features should be selected from the list of standard blood characteristics, and decision-making software based on appropriate clinical data should be created. This review describes the abilities to develop predictive models for COVID-19 detection using routine blood tests and machine learning

    Diagnosis of oral lichen planus from analysis of saliva samples using terahertz time-domain spectroscopy and chemometrics

    Get PDF
    The ability to diagnose oral lichen planus (OLP) based on saliva analysis using THz time-domain spectroscopy and chemometrics is discussed. The study involved 30 patients (2 male and 28 female) with OLP. This group consisted of two subgroups with the erosive form of OLP (n  =  15) and with the reticular and papular forms of OLP (n  =  15). The control group consisted of six healthy volunteers (one male and five females) without inflammation in the mucous membrane in the oral cavity and without periodontitis. Principal component analysis was used to reveal informative features in the experimental data. The one-versus-one multiclass classifier using support vector machine binary classifiers was used. The two-stage classification approach using several absorption spectra scans for an individual saliva sample provided 100% accuracy of differential classification between OLP subgroups and control group
    corecore