3 research outputs found
WOUND HEALING BACTERIAL CELLULOSE BASED BIOCOMPOSITE MATERIAL WITH CHITOSAN AND BACILLUS SUBTILIS EXOMETABOLITES
This work was supported by the Ministry of Education and Science of the Republic of Kazakhstan, project # 2679/GF4 «Development of biocomposite materials on the basis of bacterial cellulose for creating the transdermal therapeutic systems»
Physicochemical and Antibacterial Properties of Composite Films Based on Bacterial Cellulose and Chitosan for Wound Dressing Materials
New bacterial cellulose/chitosan (BC/Ch) nanocomposite films were obtained using a simple procedure by immersing BC synthesized by Komagataeibacter xylinus in 1% acetic acid solutions of Ch with the degree of deacetylation 75‒85% of medium molecular weight. The BC and BC/Ch composites chemical composition was examined by FTIR, the mechanical properties by a tensile tester, surface morphology by scanning electron microscopy, and antibacterial activity against S. aureus, E. coli and P. aeruginosa by diffusion and joint incubation methods. The FTIR spectra indicated the intermolecular interaction between BC and Ch. Due to addition of 0.6% (w/v) Ch, the films of BC/Ch become more homogeneous with a significantly denser fibril structure, smaller pore diameter and higher surface area in comparison to those of pure BC films. Micro- (15‒35 nm) and macrofibrils (50‒150 nm) in both BC and BC/Ch films are joined in ribbon-like fibers, providing a high degree of mechanical strength (Young’s modulus: 33‒36 MPa, tensile strength and elongation et break: 17, 22 MPa). The obtained hybrid material is transparent, flexible and displays good water absorption capacity and water vapor permeability. The films have reasonable thermal stability to be in contact with body or during steam sterilization, since maximum degradation temperature (Td) of both biocomposites is around 400‒600 °C. The disc diffusion method confirmed that the BC/Ch films have predominantly non-diffusible antibacterial properties. Antibacterial assessment by the joint incubation method proved that addition of Ch to BC films resulted in significant growth inhibition against target bacteria. The BC/Ch biocomposites’ notable properties make them suitable for wound healing applications
Advanced “Green” Prebiotic Composite of Bacterial Cellulose/Pullulan Based on Synthetic Biology-Powered Microbial Coculture Strategy
Bacterial cellulose (BC) is a biopolymer produced by different microorganisms, but in biotechnological practice, Komagataeibacter xylinus is used. The micro- and nanofibrillar structure of BC, which forms many different-sized pores, creates prerequisites for the introduction of other polymers into it, including those synthesized by other microorganisms. The study aims to develop a cocultivation system of BC and prebiotic producers to obtain BC-based composite material with prebiotic activity. In this study, pullulan (PUL) was found to stimulate the growth of the probiotic strain Lactobacillus rhamnosus GG better than the other microbial polysaccharides gellan and xanthan. BC/PUL biocomposite with prebiotic properties was obtained by cocultivation of Komagataeibacter xylinus and Aureobasidium pullulans, BC and PUL producers respectively, on molasses medium. The inclusion of PUL in BC is proved gravimetrically by scanning electron microscopy and by Fourier transformed infrared spectroscopy. Cocultivation demonstrated a composite effect on the aggregation and binding of BC fibers, which led to a significant improvement in mechanical properties. The developed approach for “grafting” of prebiotic activity on BC allows preparation of environmentally friendly composites of better quality