7 research outputs found

    Conjugated Polyimidazole Nanoparticles as Biodegradable Electrode Materials for Organic Batteries

    Get PDF
    Conjugated polymers are promising active materials for batteries. Batteries not only need to have high energy density but should also combine safe handling with recyclability or biodegradability after reaching their end-of-life. Here, π-conjugated polyimidazole particles are developed, which are prepared using atom economic direct arylation adapted to a dispersion polymerization protocol. The synthesis yields polyimidazole nanoparticles of tunable size and narrow dispersity. In addition, the degree of crosslinking of the polymer particles can be controlled. It is demonstrated that the polyimidazole nanoparticles can be processed together with carbon black and biodegradable carboxymethyl cellulose binder as an active material for organic battery electrodes. Electrochemical characterization shows that a higher degree of crosslinking significantly improves the electrochemical performance and leads to clearer oxidation and reduction signals of the polymer. Polyimidazole as part of the composite electrode shows complete degradation by exposure to composting bacteria over the course of 72 h

    Short Photoperiod-Dependent Enrichment of <i>Akkermansia spec</i>. as the Major Change in the Intestinal Microbiome of Djungarian Hamsters (<i>Phodopus sungorus</i>)

    No full text
    The Djungarian hamster (Phodopus sungorus) is a prominent model organism for seasonal acclimatization, showing drastic whole-body physiological adjustments to an energetically challenging environment, which are considered to also involve the gut microbiome. Fecal samples of hamsters in long photoperiod and again after twelve weeks in short photoperiod were analyzed by 16S-rRNA sequencing to evaluate seasonal changes in the respective gut microbiomes. In both photoperiods, the overall composition was stable in the major superordinate phyla of the microbiota, with distinct and delicate changes of abundance in phyla representing each Akkermansia muciniphila is a prominent gut microbiome inhabitant well described as important in the health context of animals and humans, including neurodegenerative diseases and obesity. Since diet was not changed, Akkermansia enrichment appears to be a direct consequence of short photoperiod acclimation. Future research will investigate whether the Djungarian hamster intestinal microbiome is responsible for or responsive to seasonal acclimation, focusing on probiotic supplementation

    MDPI-IJMS_Kissmann et al. 2023

    No full text
    item provides body mass, food, and fur index data of Djungarian hamsters in summer-like long photoperiod and during twelve weeks of acclimation to winter-like short photoperiod furthermore, 16S RNA Illumina sequence counts of intestinal microbiome taxa from pooled long and short photoperiod fecal samples are listed </ul

    Enriched Aptamer Libraries in Fluorescence-Based Assays for <i>Rikenella microfusus</i>-Specific Gut Microbiome Analyses

    No full text
    Rikenella microfusus is an essential intestinal probiotic with great potential. The latest research shows that imbalance in the intestinal flora are related to the occurrence of various diseases, such as intestinal diseases, immune diseases, and metabolic diseases. Rikenella may be a target or biomarker for some diseases, providing a new possibility for preventing and treating these diseases by monitoring and optimizing the abundance of Rikenella in the intestine. However, the current monitoring methods have disadvantages, such as long detection times, complicated operations, and high costs, which seriously limit the possibility of clinical application of microbiome-based treatment options. Therefore, the intention of this study was to evolve an enriched aptamer library to be used for specific labeling of R. microfusus, allowing rapid and low-cost detection methods and, ultimately the construction of aptamer-based biosensors. In this study, we used Rikenella as the target bacterium for an in vitro whole Cell-SELEX (Systematic Evolution of Ligands by EXponential Enrichment) to evolve and enrich specific DNA oligonucleotide aptamers. Five other prominent anaerobic gut bacteria were included in this process for counterselection and served as control cells. The aptamer library R.m-R13 was evolved with high specificity and strong affinity (Kd = 9.597 nM after 13 rounds of selection). With this enriched aptamer library, R. microfusus could efficiently be discriminated from the control bacteria in complex mixtures using different analysis techniques, including fluorescence microscopy or fluorometric suspension assays, and even in human stool samples. These preliminary results open new avenues toward the development of aptamer-based microbiome bio-sensing applications for fast and reliable monitoring of R. microfusus

    Fully-conjugated polyimidazole nanoparticles as active material in bi-odegradable electrodes for organic batteries

    No full text
    Conjugated polymers are promising active materials for batteries. Batteries not only need to have high energy density but should also combine safe handling with recyclability or biodegradability after reaching their end-of-life. Here, we develop π-conjugated polyimidazole particles, which we prepare using atom economic direct arylation adapted to a dis-persion polymerization protocol. The synthesis yields polyimidazole nanoparticles with tunable size and narrow dispersi-ty. In addition, the degree of crosslinking of the polymer particles can be controlled. We demonstrate that the polyimid-azole nanoparticles can be processed together with carbon black and biodegradable carboxymethyl cellulose binder as active material for organic battery electrodes. Electrochemical characterization shows that a higher degree of crosslink-ing significantly improves the electrochemical processes and leads to clearer oxidation and reduction signals from the polymer. Polyimidazole as part of the composite electrode shows complete degradation by exposure to composting bac-teria over the course of 72 h

    Polyclonal aptamer libraries as binding entities on a graphene FET based biosensor for the discrimination of apo- and holo- retinol binding protein 4

    No full text
    Oligonucleotide DNA aptamers represent an emergently important class of binding entities towards as different analytes as small molecules or even whole cells. Without the canonical isolation of individual aptamers following the SELEX process already the focused polyclonal libraries prepared by this in vitro evolution and selection can directly be used to label their dedicated analytes and to serve as binding molecules on surfaces. Here we report the first instance of a sensor able to discriminate between loaded and unloaded retinol binding protein 4 (RBP4), an important biomarker for the prediction of diabetes and kidney disease. The sensor relies purely on two aptamer libraries tuned such, that they discriminate between the protein isoforms, requiring no further sample labelling to detect RBP4 in both state. The evolution, binding properties of the libraries and the functionalization of graphene FET sensor chips are presented as well as the functionality of the resulting biosensor

    Cm-p5 Peptide Dimers Inhibit Biofilms of <i>Candida albicans</i> Clinical Isolates, <i>C. parapsilosis</i> and Fluconazole-Resistant Mutants of <i>C. auris</i>

    No full text
    Antimicrobial peptides (AMPs) represent a promising class of therapeutic biomolecules that show antimicrobial activity against a broad range of microorganisms, including life-threatening pathogens. In contrast to classic AMPs with membrane-disrupting activities, new peptides with a specific anti-biofilm effect are gaining in importance since biofilms could be the most important way of life, especially for pathogens, as the interaction with host tissues is crucial for the full development of their virulence in the event of infection. Therefore, in a previous study, two synthetic dimeric derivatives (parallel Dimer 1 and antiparallel Dimer 2) of the AMP Cm-p5 showed specific inhibition of the formation of Candida auris biofilms. Here we show that these derivatives are also dose-dependently effective against de novo biofilms that are formed by the widespread pathogenic yeasts C. albicans and C. parapsilosis. Moreover, the activity of the peptides was demonstrated even against two fluconazole-resistant strains of C. auris
    corecore