11 research outputs found

    Conjugated Polyimidazole Nanoparticles as Biodegradable Electrode Materials for Organic Batteries

    Get PDF
    Conjugated polymers are promising active materials for batteries. Batteries not only need to have high energy density but should also combine safe handling with recyclability or biodegradability after reaching their end-of-life. Here, π-conjugated polyimidazole particles are developed, which are prepared using atom economic direct arylation adapted to a dispersion polymerization protocol. The synthesis yields polyimidazole nanoparticles of tunable size and narrow dispersity. In addition, the degree of crosslinking of the polymer particles can be controlled. It is demonstrated that the polyimidazole nanoparticles can be processed together with carbon black and biodegradable carboxymethyl cellulose binder as an active material for organic battery electrodes. Electrochemical characterization shows that a higher degree of crosslinking significantly improves the electrochemical performance and leads to clearer oxidation and reduction signals of the polymer. Polyimidazole as part of the composite electrode shows complete degradation by exposure to composting bacteria over the course of 72 h

    Pore-forming peptide C14R exhibits potent antifungal activity against clinical isolates of Candida albicans and Candida auris

    Get PDF
    IntroductionInvasive candidiasis is a global public health problem as it poses a significant threat in hospital-settings. The aim of this study was to evaluate C14R, an analog derived from peptide BP100, as a potential antimicrobial peptide against the prevalent opportunistic yeast Candida albicans and the emergent multidrug-resistant yeast Candida auris.MethodsAntifungal susceptibility testing of C14R against 99 C. albicans and 105 C. auris clinical isolates from Colombia, was determined by broth microdilution. Fluconazole was used as a control antifungal. The synergy between C14R and fluconazole was assessed in resistant isolates. Assays against fungal biofilm and growth curves were also carried out. Morphological alterations of yeast cell surface were evaluated by scanning electron microscopy. A permeability assay verified the pore-forming ability of C14R.ResultsC. albicans and C. auris isolates had a geometric mean MIC against C14R of 4.42 ”g/ml and 5.34 ”g/ml, respectively. Notably, none of the isolates of any species exhibited growth at the highest evaluated peptide concentration (200 ”g/ml). Synergistic effects were observed when combining the peptide and fluconazole. C14R affects biofilm and growth of C. albicans and C. auris. Cell membrane disruptions were observed in both species after treatment with the peptide. It was confirmed that C14R form pores in C. albicans’ membrane.DiscussionC14R has a potent antifungal activity against a large set of clinical isolates of both C. albicans and C. auris, showing its capacity to disrupt Candida membranes. This antifungal activity remains consistent across isolates regardless of their clinical source. Furthermore, the absence of correlation between MICs to C14R and resistance to fluconazole indicates the peptide’s potential effectiveness against fluconazole-resistant strains. Our results suggest the potential of C14R, a pore-forming peptide, as a treatment option for fungal infections, such as invasive candidiasis, including fluconazole and amphotericin B -resistant strains

    Short Photoperiod-Dependent Enrichment of <i>Akkermansia spec</i>. as the Major Change in the Intestinal Microbiome of Djungarian Hamsters (<i>Phodopus sungorus</i>)

    No full text
    The Djungarian hamster (Phodopus sungorus) is a prominent model organism for seasonal acclimatization, showing drastic whole-body physiological adjustments to an energetically challenging environment, which are considered to also involve the gut microbiome. Fecal samples of hamsters in long photoperiod and again after twelve weeks in short photoperiod were analyzed by 16S-rRNA sequencing to evaluate seasonal changes in the respective gut microbiomes. In both photoperiods, the overall composition was stable in the major superordinate phyla of the microbiota, with distinct and delicate changes of abundance in phyla representing each Akkermansia muciniphila is a prominent gut microbiome inhabitant well described as important in the health context of animals and humans, including neurodegenerative diseases and obesity. Since diet was not changed, Akkermansia enrichment appears to be a direct consequence of short photoperiod acclimation. Future research will investigate whether the Djungarian hamster intestinal microbiome is responsible for or responsive to seasonal acclimation, focusing on probiotic supplementation

    MDPI-IJMS_Kissmann et al. 2023

    No full text
    item provides body mass, food, and fur index data of Djungarian hamsters in summer-like long photoperiod and during twelve weeks of acclimation to winter-like short photoperiod furthermore, 16S RNA Illumina sequence counts of intestinal microbiome taxa from pooled long and short photoperiod fecal samples are listed </ul

    Enriched Aptamer Libraries in Fluorescence-Based Assays for <i>Rikenella microfusus</i>-Specific Gut Microbiome Analyses

    No full text
    Rikenella microfusus is an essential intestinal probiotic with great potential. The latest research shows that imbalance in the intestinal flora are related to the occurrence of various diseases, such as intestinal diseases, immune diseases, and metabolic diseases. Rikenella may be a target or biomarker for some diseases, providing a new possibility for preventing and treating these diseases by monitoring and optimizing the abundance of Rikenella in the intestine. However, the current monitoring methods have disadvantages, such as long detection times, complicated operations, and high costs, which seriously limit the possibility of clinical application of microbiome-based treatment options. Therefore, the intention of this study was to evolve an enriched aptamer library to be used for specific labeling of R. microfusus, allowing rapid and low-cost detection methods and, ultimately the construction of aptamer-based biosensors. In this study, we used Rikenella as the target bacterium for an in vitro whole Cell-SELEX (Systematic Evolution of Ligands by EXponential Enrichment) to evolve and enrich specific DNA oligonucleotide aptamers. Five other prominent anaerobic gut bacteria were included in this process for counterselection and served as control cells. The aptamer library R.m-R13 was evolved with high specificity and strong affinity (Kd = 9.597 nM after 13 rounds of selection). With this enriched aptamer library, R. microfusus could efficiently be discriminated from the control bacteria in complex mixtures using different analysis techniques, including fluorescence microscopy or fluorometric suspension assays, and even in human stool samples. These preliminary results open new avenues toward the development of aptamer-based microbiome bio-sensing applications for fast and reliable monitoring of R. microfusus

    Fully-conjugated polyimidazole nanoparticles as active material in bi-odegradable electrodes for organic batteries

    No full text
    Conjugated polymers are promising active materials for batteries. Batteries not only need to have high energy density but should also combine safe handling with recyclability or biodegradability after reaching their end-of-life. Here, we develop π-conjugated polyimidazole particles, which we prepare using atom economic direct arylation adapted to a dis-persion polymerization protocol. The synthesis yields polyimidazole nanoparticles with tunable size and narrow dispersi-ty. In addition, the degree of crosslinking of the polymer particles can be controlled. We demonstrate that the polyimid-azole nanoparticles can be processed together with carbon black and biodegradable carboxymethyl cellulose binder as active material for organic battery electrodes. Electrochemical characterization shows that a higher degree of crosslink-ing significantly improves the electrochemical processes and leads to clearer oxidation and reduction signals from the polymer. Polyimidazole as part of the composite electrode shows complete degradation by exposure to composting bac-teria over the course of 72 h

    Robust Fluorometric Aptamer Assay for Direct and Rapid Detection of Clinical Isolates of <i>Candida</i> spec.

    No full text
    Infections caused by yeasts of the genus Candida are likely to occur not only in immunocompromised patients but also in healthy individuals, leading to infections of the gastrointestinal tract, urinary tract, and respiratory tract. Due to the rapid increase in the frequency of reported Candidiasis cases in recent years, diagnostic research has become the subject of many studies, and therefore, we developed a polyclonal aptamer library-based fluorometric assay with high specificity and affinity towards Candida spec. to quantify the pathogens in clinical samples with high sensitivity. We recently obtained the specific aptamer library R10, which explicitly recognized Candida and evolved it by mimicking an early skin infection model caused by Candida using the FluCell-SELEX system. In the follow-up study presented here, we demonstrate that the aptamer library R10-based bioassay specifically recognizes invasive clinical Candida isolates, including not only C. albicans but also strains like C. tropcialis, C. krusei, or C. glabrata. The next-generation fluorometric bioassay presented here can reliably and easily detect an early Candida infection and could be used for further clinical research or could even be developed into a full in vitro diagnostic tool

    Polyclonal aptamer libraries as binding entities on a graphene FET based biosensor for the discrimination of apo- and holo- retinol binding protein 4

    No full text
    Oligonucleotide DNA aptamers represent an emergently important class of binding entities towards as different analytes as small molecules or even whole cells. Without the canonical isolation of individual aptamers following the SELEX process already the focused polyclonal libraries prepared by this in vitro evolution and selection can directly be used to label their dedicated analytes and to serve as binding molecules on surfaces. Here we report the first instance of a sensor able to discriminate between loaded and unloaded retinol binding protein 4 (RBP4), an important biomarker for the prediction of diabetes and kidney disease. The sensor relies purely on two aptamer libraries tuned such, that they discriminate between the protein isoforms, requiring no further sample labelling to detect RBP4 in both state. The evolution, binding properties of the libraries and the functionalization of graphene FET sensor chips are presented as well as the functionality of the resulting biosensor

    An Increase in Prominent Probiotics Represents the Major Change in the Gut Microbiota in Morbidly Obese Female Patients upon Bariatric Surgery

    No full text
    The global increase in obesity carries inherent health implications, with an increased BMI being a known risk factor for diseases such as type 2 diabetes, cardiovascular diseases, or different cancer types. The long-term effectiveness of diet therapy in addressing morbid obesity is extremely limited, with no adequate pharmaceutical agents available as treatment options, resulting in bariatric surgery being the only viable option to achieve and maintain significant long-term weight loss. Something that plays an important role in overall human health is the gut microbiome and its complex composition, which is usually altered and reduced in complexity/diversity in severely obese patients. In this study, the influence of bariatric surgery and the resulting weight loss on the gut microbiome composition of twelve morbidly obese (BMI ≄ 40) adult female central European patients was investigated by comparing the relative abundances of the major microbial phyla Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria pre- and post-surgery. We also aimed to give insight into the major changes in individual prominent and promising future probiotic bacteria characterized by an overall increase in abundance accompanied by a switch of enterotypes. Identifying specific microbial alterations associated with successful weight-loss outcomes may contribute to the development of future therapeutic interventions by supplementation with next-generation probiotics

    Conjugated Polyimidazole Nanoparticles as Biodegradable Electrode Materials for Organic Batteries

    No full text
    Abstract Conjugated polymers are promising active materials for batteries. Batteries not only need to have high energy density but should also combine safe handling with recyclability or biodegradability after reaching their end‐of‐life. Here, π‐conjugated polyimidazole particles are developed, which are prepared using atom economic direct arylation adapted to a dispersion polymerization protocol. The synthesis yields polyimidazole nanoparticles of tunable size and narrow dispersity. In addition, the degree of crosslinking of the polymer particles can be controlled. It is demonstrated that the polyimidazole nanoparticles can be processed together with carbon black and biodegradable carboxymethyl cellulose binder as an active material for organic battery electrodes. Electrochemical characterization shows that a higher degree of crosslinking significantly improves the electrochemical performance and leads to clearer oxidation and reduction signals of the polymer. Polyimidazole as part of the composite electrode shows complete degradation by exposure to composting bacteria over the course of 72 h
    corecore