328 research outputs found

    Assessment of tissue fibrosis in skin biopsies from patients with systemic sclerosis employing confocal laser scanning microscopy: an objective outcome measure for clinical trials?

    Get PDF
    OBJECTIVES: To obtain an objective, unbiased assessment of skin fibrosis in patients with SSc for use in clinical trials of SSc disease-modifying therapeutics. METHODS: Skin biopsies from the dorsal forearm of six patients with diffuse SSc and six healthy controls, and skin biopsies from the forearm of one patient with diffuse SSc before and following 1 year treatment with mycophenolate mofetil were analysed by confocal laser scanning microscopy (CLSM) with specific antibodies against collagen types I and III or fibronectin. The integrated density of fluorescence (IDF) was calculated employing National Institutes of Health-ImageJ software in at least four different fields per biopsy spanning the full dermal thickness. RESULTS: The intensities of collagen types I and III and fibronectin IDF were 174, 147 and 139% higher in SSc skin than in normal skin, respectively. All differences were statistically significant. The sum of the IDF values obtained for the three proteins yielded a comprehensive fibrosis score. The average fibrosis score for the six SSc samples was 28.3 x 10(6) compared with 18.6 x 10(6) for the six normal skin samples (P \u3c 0.0001). Comparison of skin biopsies obtained from the same SSc patient before treatment and after 12 months of treatment with mycophenolate mofetil showed a reduction of 39% in total fibrosis score after treatment. CONCLUSIONS: CLSM followed by quantitative image analysis provides an objective and unbiased assessment of skin fibrosis in SSc and could be a useful end-point for clinical trials with disease-modifying agents to monitor the response or progression of the disease

    Sonographically Guided Posterior Subtalar Joint Injections via the Sinus Tarsi Approach

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135311/1/jum201534183.pd

    Polarization in Strong-Field Ionization of Excited Helium

    Get PDF
    We analyze how bound-state excitation, electron exchange and the residual binding potential influence above-threshold ionization (ATI) in helium prepared in an excited p state, oriented parallel and perpendicular to a linearly polarized mid-IR field. Using the ab initio B-spline algebraic diagrammatic construction, and several one-electron methods with effective potentials, including the Schrödinger solver Qprop, modified versions of the strong-field approximation (SFA) and the Coulomb quantum-orbit strong-field approximation, we find that these specific physical mechanisms leave significant imprints in ATI spectra and photoelectron momentum distributions. Examples are changes of up to two orders of magnitude in the high-energy photoelectron region, and ramp-like structures that can be traced back to Coulomb-distorted trajectories. The present work also shows that electron exchange renders rescattering less effective, causing suppressions in the ATI plateau. Due to the long-range potential, the electron continuum dynamics are no longer confined to the polarization axis, in contrast to the predictions of traditional approaches. Thus, one may in principle probe excited-state configurations perpendicular to the driving-field polarization without the need for orthogonally polarized fields

    Femtosecond exciton dynamics in WSe2 optical waveguides

    Get PDF
    Van-der Waals (vdW) atomically layered crystals can act as optical waveguides over a broad range of the electromagnetic spectrum ranging from Terahertz to visible. Unlike common Si-based waveguides, vdW semiconductors host strong excitonic resonances that may be controlled using non-thermal stimuli including electrostatic gating and photoexcitation. Here, we utilize waveguide modes to examine photo-induced changes of excitons in the prototypical vdW semiconductor, WSe2, prompted by femtosecond light pulses. Using time-resolved scanning near-field optical microscopy we visualize the electric field profiles of waveguide modes in real space and time and extract the temporal evolution of the optical constants following femtosecond photoexcitation. By monitoring the phase velocity of the waveguide modes, we detect incoherent A-exciton bleaching along with a coherent optical Stark shift in WSe2

    Self-directed learning of basic musculoskeletal ultrasound among rheumatologists in the United States

    Get PDF
    Objective Because musculoskeletal ultrasound (MSUS) is highly user dependent, we aimed to establish whether non-mentored learning of MSUS is sufficient to achieve the same level of diagnostic accuracy and scanning reliability as has been achieved by rheumatologists recognized as international experts in MSUS. Methods A group of 8 rheumatologists with more experience in MSUS and 8 rheumatologists with less experience in MSUS participated in an MSUS exercise to assess patients with musculoskeletal abnormalities commonly seen in a rheumatology practice. Patients' established diagnoses were obtained from chart review (gout, osteoarthritis, rotator cuff syndrome, rheumatoid arthritis, and seronegative arthritis). Two examining groups were formed, each composed of 4 less experienced and 4 more experienced examiners. Each group scanned 1 predefined body region (hand, wrist, elbow, shoulder, knee, or ankle) in each of 8 patients, blinded to medical history and physical examination. Structural abnormalities were noted with dichotomous answers, and an open-ended answer was used for the final diagnosis. Results Less experienced and more experienced examiners achieved the same diagnostic accuracy (US-established diagnosis versus chart review diagnosis). The interrater reliability for tissue pathology was slightly higher for more experienced versus less experienced examiners (Κ = 0.43 versus Κ = 0.34; P = 0.001). Conclusion Non-mentored training in MSUS can lead to the achievement of diagnostic accuracy in MSUS comparable to that achieved by highly experienced international experts. Reliability may increase slightly with additional experience. Further study is needed to determine the minimal training requirement to achieve proficiency in MSUS.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65036/1/20063_ftp.pd

    Persistent changes in spinal cord gene expression after recovery from inflammatory hyperalgesia: A preliminary study on pain memory

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous studies found that rats subjected to carrageenan injection develop hyperalgesia, and despite complete recovery in several days, they continue to have an enhanced hyperalgesic response to a new noxious challenge for more than 28d. The study's aim was to identify candidate genes that have a role in the formation of the long-term hyperalgesia-related imprint in the spinal cord. This objective was undertaken with the understanding that the long-lasting imprint of acute pain in the central nervous system may contribute to the transition of acute pain to chronicity.</p> <p>Results</p> <p>To analyze changes in gene expression when carrageenan-induced hyperalgesia has disappeared but propensity for the enhanced hyperalgesic response is still present, we determined the gene expression profile using oligo microarray in the lumbar part of the spinal cord in three groups of rats: 28d after carrageenan injection, 24h after injection (the peak of inflammation), and with no injection (control group). Out of 17,000 annotated genes, 356 were found to be differentially expressed compared with the control group at 28d, and 329 at 24h after carrageenan injection (both groups at p < 0.01). Among differentially expressed genes, 67 (39 in 28d group) were identified as being part of pain-related pathways, altered in different models of pain, or interacting with proteins involved in pain-related pathways. Using gene ontology (GO) classification, we have identified 3 functional classes deserving attention for possible association with pain memory: They are related to cell-to-cell interaction, synaptogenesis, and neurogenesis.</p> <p>Conclusion</p> <p>Despite recovery from inflammatory hyperalgesia, persistent changes in spinal cord gene expression may underlie the propensity for the enhanced hyperalgesic response. We suggest that lasting changes in expression of genes involved in the formation of new synapses and neurogenesis may contribute to the transition of acute pain to chronicity.</p

    Mu-Opioid Receptors Transiently Activate the Akt-nNOS Pathway to Produce Sustained Potentiation of PKC-Mediated NMDAR-CaMKII Signaling

    Get PDF
    BACKGROUND: In periaqueductal grey (PAG) matter, cross-talk between the Mu-opioid receptor (MOR) and the glutamate N-methyl-D-Aspartate receptor (NMDAR)-CaMKII pathway supports the development of analgesic tolerance to morphine. In neurons, histidine triad nucleotide binding protein 1 (HINT1) connects the regulators of G protein signaling RGSZ1 and RGSZ2 to the C terminus of the MOR. In response to morphine, this HINT1-RGSZ complex binds PKCgamma, and afterwards, the interplay between PKCgamma, Src and Gz/Gi proteins leads to sustained potentiation of NMDAR-mediated glutamate responses. METHODOLOGY/PRINCIPAL FINDINGS: Following an intracerebroventricular (icv) injection of 10 nmol morphine, Akt was recruited to the synaptosomal membrane and activated by Thr308 and Ser473 phosphorylation. The Akt activation was immediately transferred to neural Nitric Oxide Synthase (nNOS) Ser1417. Afterwards, nitric oxide (NO)-released zinc ions recruited PKCgamma to the MOR to promote the Src-mediated phosphorylation of the Tyr1325 NMDAR2A subunit. This action increased NMDAR calcium flux and CaMKII was activated in a calcium-calmodulin dependent manner. CaMKII then acted on nNOS Ser847 to produce a sustained reduction in NO levels. The activation of the Akt-nNOS pathway was also reduced by the binding of these proteins to the MOR-HINT1 complex where they remained inactive. Tolerance to acute morphine developed as a result of phosphorylation of MOR cytosolic residues, uncoupling from the regulated G proteins which are transferred to RGSZ2 proteins. The diminished effect of morphine was prevented by LNNA, an inhibitor of nNOS function, and naltrindole, a delta-opioid receptor antagonist that also inhibits Akt. CONCLUSIONS/SIGNIFICANCE: Analysis of the regulatory phosphorylation of the proteins included in the study indicated that morphine produces a transient activation of the Akt/PKB-nNOS pathway. This activation occurs upstream of PKCgamma and Src mediated potentiation of NMDAR activity, ultimately leading to morphine tolerance. In summary, the Akt-nNOS pathway acts as a primer for morphine-triggered events which leads to the sustained potentiation of the NMDAR-CaMKII pathway and MOR inhibition
    • …
    corecore