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Abstract
We analyze how bound-state excitation, electron exchange and the residual binding potential
influence above-threshold ionization (ATI) in helium prepared in an excited p state, oriented
parallel and perpendicular to a linearly polarized mid-IR field. Using the ab initio B-spline
algebraic diagrammatic construction, and several one-electron methods with effective
potentials, including the Schrödinger solver Qprop, modified versions of the strong-field
approximation (SFA) and the Coulomb quantum-orbit strong-field approximation, we find that
these specific physical mechanisms leave significant imprints in ATI spectra and photoelectron
momentum distributions. Examples are changes of up to two orders of magnitude in the
high-energy photoelectron region, and ramp-like structures that can be traced back to
Coulomb-distorted trajectories. The present work also shows that electron exchange renders
rescattering less effective, causing suppressions in the ATI plateau. Due to the long-range
potential, the electron continuum dynamics are no longer confined to the polarization axis, in
contrast to the predictions of traditional approaches. Thus, one may in principle probe
excited-state configurations perpendicular to the driving-field polarization without the need for
orthogonally polarized fields.

Keywords: photoelectron holography, excited states, momentum distributions,
above-threshold ionization

(Some figures may appear in colour only in the online journal)

1. Introduction

Above-threshold ionization (ATI) is a strong-field phe-
nomenon in which an atom absorbs more photons than are

∗ Author to whom any correspondence should be addressed.
Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

energetically required for it to ionize. Since its first observation
[1], ATI has been employed to provide unprecedented insight
into the interaction of intense laser radiation with atoms or
molecules. The high-energy photoelectrons released into the
continuum, together with subfemtosecond resolution, make
ATI a powerful tool for probing real-time electron dynam-
ics. Applications of ATI directly associated with imaging
and target reconstruction are, for instance, laser-induced elec-
tron diffraction [2] and ultrafast photoelectron holography [3].
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Such imaging methods combine high photoelectron currents
and the possibility of retrieving phase differences without the
need for elaborate interferometric schemes. See, e.g., [4] for a
review.

For that reason, orbit-based models have been used for
over two decades due to their huge predictive power. By relat-
ing quantum transition amplitudes to electron paths, which
may interfere for a given photoelectron energy, they provide
a physical picture of ATI as a laser-induced rescattering pro-
cess ([5–7]; for a review see [8]). Attosecond resolution
is guaranteed in the rescattering process and ensuing phe-
nomena because it takes place within a fraction of a field
cycle, which, typically, is a few femtoseconds. Established
approaches such as the strong-field approximation (SFA)
[9–11] consider the target as a source term and employ a
structureless continuum, i.e., field-dressed plane waves. This
has allowed the transition amplitudes associated to strong-
field phenomena to be written as a laser-dressed Born-type
series [5–7], which considerably reduces the numerical effort
involved. Besides the easy implementation, an obvious advan-
tage is that the interaction with the core is well-defined. This
makes rescattering processes straightforward to identify. Fur-
thermore, the SFA can be easily associated with interfering
electron orbits, if formulated in conjunction with saddle-point
methods [12–14].

For that reason, the insight provided by the SFA was vital
for identifying the overall structure and interpreting key fea-
tures in ATI spectra. The ATI spectrum consists of a low-
energy region, up to 2Up, where Up is the ponderomotive
energy, and of a high energy region extending to approximately
10Up. The 2Up cutoff corresponds to the ‘classical’ kinetic
energy limit for ‘direct’ ATI electrons, which are freed into the
continuum via tunnel or multiphoton ionization, and reach the
detector without further interaction with the target. The ion-
ization mechanism that predominates depends on the Keldysh
parameter for the system in question, γ =

√
Ip/2Up, where

Ip is the ionization potential. A Keldysh parameter of greater
than one implies multiphoton ionization, while tunneling is
dominant if γ � 1 [9].

The high-energy region is mainly dominated by high-order
ATI (HATI), which is characterized by a plateau that does
not significantly change across the energy distribution, falling
off at the cutoff point of approximately 10Up. The widely
accepted explanation of this feature is that the high-energy
photoelectrons result from the ionized electron being driven
back by the laser field to scatter elastically off its parent ion.
The rescattered electron is then accelerated further in the field
to energies up to 10Up, which can be derived from a classical
model [15]. Alternatively, the freed electron may recombine
with a bound state of the parent ion, which leads to high-order
harmonic generation (HHG), or recollide inelastically with the
core, releasing other electrons. The latter processes give rise
to laser-induced nonsequential double and multiple ionization
(NSDI, NSMI) [16, 17].

Nonetheless, the aforementioned picture is an oversimplifi-
cation. For example, ATI peaks have a substructure—termed
Freeman resonances—caused by the ponderomotive shifts of
states that produces resonant enhancements [18]. This effect

can also cause broadening of the peaks and even large energy
shifts. Furthermore, recent discoveries have cast doubt on
the distinction between the tunneling and multiphoton regime
based on the Keldysh parameter—for instance, photoelec-
tron spectra obtained from solving the time-dependent (TD)
Schrödinger equation (TDSE) show features consistent with
multiphoton absorption even for laser intensities that corre-
spond to the tunneling ionization regime [19]. In addition
to that, specific features of the plateau can vary from sys-
tem to system. Some atomic targets, such as krypton, have a
dropping plateau while others, including xenon, have a flatter
plateau. Specific laser intensities can also cause resonance-like
enhancements to the spectra. A variety of theoretical models
have been proposed in recent years to account for these sur-
prising observations, including Floquet theory [20], channel-
closing theory [21, 22] and models based on the analysis of
TDSE solutions [23].

Moreover, dynamic effects such as charge migration
[24–28], bond breaking [29], nuclear degrees of freedom
[30] and multielectron resonances [31, 32] are expected to be
important for larger systems. Extended targets also imply a
structured continuum, or a blurred bound-continuum distinc-
tion. Modeling such dynamics is not an easy task even for
the simplest possible case, i.e., a single-electron continuum
under the joint influence of the laser field and a long-range
potential. The residual potential blurs the distinction between
‘direct’ and ‘rescattered’ as the electron now may be lightly
deflected, or undergo a soft scattering by the core [33]. This
goes beyond the clear-cut distinction imposed by Born-type
approaches such as the SFA [34, 35]. All the above suggests
the driving-field polarization as a tool to assess what the SFA
leaves out. In fact, experimental and theoretical studies have
been carried out that demonstrate the dependence of recolli-
sion outcomes—such as HATI or HHG—on the polarization
of the incident radiation [36, 37]. These studies show that
the yield is increasingly suppressed as the ellipticity of the
laser pulse is increased. The generally accepted explanation
for this observation is that an elliptical laser will imbue the
ionized electron with a non-zero drift velocity that reduces
the chances of recollision with the parent ion by the elec-
tron [38]. Subsequently, it was demonstrated that substitut-
ing laser polarization for atomic polarization yielded the same
order of magnitude suppression in the production of HHG
[39]. The present work will extend this line of inquiry to the
dependence of the production of HATI on the atomic polar-
ization. We will focus for simplicity on the helium atom pre-
pared in an excited state of ns1(n + 1)p1 interacting with a
linearly polarized field. The polarization of the p orbital can
then be oriented along the laser polarization axis or in the plane
perpendicular to it.

In case the atomic polarization is oriented parallel to the
laser polarization, we expect there to be no suppression to
the process outlined above, wherein a continuum electron is
driven by the laser field to scatter off the parent ion. How-
ever, if the atomic polarization is oriented perpendicular to
the laser polarization, ionization in the direction of the laser
polarization is precluded due to the atomic orbital symmetry.
Therefore, ionization is only possible if the electron acquires
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a nonzero drift velocity in the plane perpendicular to the laser
polarization. This should greatly reduce the probability of a
successful recollision with the core, as the electron’s drift
velocity, unimpeded by interaction with the laser, will dis-
place it away from the parent ion. Thus, in the high inten-
sity, low frequency regime for which the recollision model is
applicable, we expect the atomic polarization to significantly
affect the HATI spectrum. On the other hand, residual central
potentials may favor ionization or rescattering off the polar-
ization axis, which deviates from the standard predictions. For
instance, in [40], rescattering in circularly polarized fields may
occur due to the interplay of the laser field and the long-range
potential.

In this work, we consider excited helium parallel and per-
pendicular to the driving-field polarization, for which we
calculate photoelectron spectra and momentum distributions.
We use approaches that incorporate the residual binding
potential and/or the core dynamics: the B spline algebraic
diagrammatic construction (ADC) (B-spline TD-ADC), the
one-electron Schrödinger solver Qprop [41, 42], the SFA
and the Coulomb quantum-orbit strong-field approximation
(CQSFA). They will allow for an assessment of what the sim-
ple rescattering picture leaves out. The B-Spline TD-ADC is
an ab-initio method that solves the 3D atomic many electron
TD Schrödinger equation for a neutral system [43]. Specif-
ically for the two-electron model studied in this work, it
accounts for electron exchange and recollision-induced exci-
tations. In the strong-field context, the B-Spline ADC has
been used in HHG [44] and pump–probe spectroscopy [45].
The CQSFA is an orbit-based method that incorporates the
Coulomb potential and the external laser field on equal foot-
ing. It has a high predictive power as it allows for quantum
mechanical pathways to be switched on and off at will. In the
context of ultrafast photoelectron holography, it led to possi-
bly the most thorough investigations of how holographic pat-
terns form [33, 46–48]. This work is organized as follows. In
section 2, we discuss the theoretical methods used in this work.
Subsequently, in section 3, we present our results for initial
perpendicular and parallel polarized states. Specifically, we
investigate angle-integrated spectra (section 3), and photoelec-
tron momentum distributions (PMDs) (section 3.2). Finally,
our main conclusions are presented in section 4.

2. Theory

In order to calculate ATI spectra or photoelectron-momentum
distributions, we must compute the TD wave function and
project it onto an asymptotic continuum state with a well-
defined momentum. Below, we will discuss several ways to
do so. We will use atomic units throughout, unless otherwise
stated, and the dipole approximation.

2.1. B-spline ADC

We calculated the ATI spectra of excited, polarised, helium
atoms using the TD B-spline ADC ab initio method [43–45,
49, 50]. Within the TD B-spline ADC approach, the 3D many-
electron TD Schrödinger equations (TDSE) for the neutral

helium atom interacting with the intense mid-IR laser field,
given by

ih̄
∂ |ΨN (t)〉

∂t
= ĤN (t) |ΨN (t)〉 , (1)

is solved by making the ansatz

|ΨN (t)〉 = αGS (t)
∣∣ΨN

GS

〉
+
∑

j

α j (t)
∣∣ΨN

j

〉

for the TD many-electron state of neutral helium. Therein∣∣ΨN
GS

〉
represents the ground state of neutral helium, while

the basis states
∣∣ΨN

j

〉
refer to the correlated many-electron

configuration states of the ADC theory for N-electron neutral
systems [51].

The total TD Hamiltonian in equation (1) for the time-
evolution of the system interacting with the pulse reads

ˆHN(t) = ĤN
0 + D̂zE(t). (2)

Here ĤN
0 is the field-free many-electron ADC Hamiltonian

describing the neutral system. The laser–atom interaction is
described in the length gauge as D̂zE(t), where the z compo-
nent of the dipole operator is D̂z =

∑N
j=1 ẑ j and the summation

over the j index runs over all the N electrons of the atom.
The single-particle basis set used in this approach consists

of spherical harmonics Yl,m (θ,ϕ) for the angular part and B-
spline functions Bi(r) for the radial coordinate. The single
particle basis functions used in this calculation are therefore
expressed as

ψi,l,m =
Bi (r)

r
Yl,m (θ,ϕ) . (3)

The initial excited states used in the present simulations
are |ΨN(t = 0)〉⊥ = |1s2px〉 and |ΨN(t = 0)〉‖ = |1s2pz〉 in the
perpendicular and parallel set-ups, respectively. In this work,
we have used the lowest level of the ADC-hierarchy compat-
ible with a correct description of the strong-field ionization
of excited helium by the mid-IR laser pulses, i.e. ADC(1).
Within ADC(1), the configuration manifold used to describe
the ionisation of helium by the laser pulses, via solving the
TDSE, consists of the singly excited one-hole–one-particle
(1h − 1p) configurations. The 1h − 1p manifold allows one
to describe ionization as well as excitation of helium atom
in any of the singly-excited bound states. The time prop-
agation of the unknown coefficients α j (t) of the B-spline
ADC(1) many-electron wave-function is performed by means
of the Arnoldi–Lanczos, algorithm [44, 45, 52]. The B
Spline ADC within ADC(1) has been successfully used in
the strong-field regime to model the intensity-dependent inter-
ference minimum that is present in the high-order harmonic
spectra of CO2 [44].

2.2. One-electron models

The methods below approximate the system by a one-electron
model, whose evolution is given, in atomic units, by the single-
electron TDSE

i∂t|ψ(t)〉 = H(t)|ψ(t)〉, (4)

3
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where the Hamiltonian

H(t) = Ha + HI(t) (5)

describes the joint influence of the binding potential and the
external field. Thereby,

Ha =
p̂2

2
+ V(r̂) (6)

gives the field-free one-electron atomic Hamiltonian and r̂ and
p̂ denote the position and momentum operators, respectively.
The coupling with the field is given by the interaction Hamilto-
nian HI(t) = r̂ · E(t) and HI(t) = p̂ · A(t) + A2/2 in the length
and velocity gauges, respectively, where E(t) = −dA(t)/dt
is the electric field of the external laser field and A(t) the
corresponding vector potential.

Equation (5) equation is either solved numerically using the
freely available software Qprop [41, 42] or semi-analytically
using the SFA or the CQSFA. Throughout, we employ the
effective potential

V(r(τ )) = −1 + f (r(τ ))
r(τ )

, (7)

where
f (r) = a1e−a2r + a3re−a4r + a5e−a6r (8)

and r(τ ) =
√

r(τ ) · r(τ ). The coefficients are chosen as a1 =
1.231 a.u., a2 = 0.662 a.u., a3 = −1.325 a.u., a4 = −1.236
a.u., a5 = −0.231 a.u. and a6 = 0.480 a.u. [53]. These
parameters were obtained by fitting to a numerical potential
computed by self-interaction free density functional theory
[54, 55].

For Qprop, the TDSE is solved in the velocity gauge, while
for the semi-analytic approaches the length-gauge Hamilto-
nian is used. This is mainly for practical reasons: the numerical
solution of the TDSE converges faster for the velocity gauge,
while the length gauge gives better results for ATI in the SFA
[56] and CQSFA [4]. For Qprop we refer to [41, 42], while
the semi-analytic models will be summarized below. In all
one-electron models, for the perpendicular initial p state, the
valued real px orbital is used via the corresponding coherent
superposition of states with m = ±1.

In Qprop it is possible to compute strong field ionization for
the initial states |ψ2p±1〉, where the subscript ±1 refers to the
quantum number m. The ‘x’ oriented state may be computed
by the following superposition,

|ψ2px〉 =
1√
2

(
|ψ2p−1〉 − |ψ2p+1〉

)
. (9)

One can simply take the amplitude components (both real
and imaginary) for the initial states |ψ2p±1〉 and compute the
coherent superposition above (9) to receive |ψ2px〉 amplitude,
which is needed to provide the yield for the PMDs.

A convenient starting point for the semi-analytic expres-
sions is the Schrödinger equation (5) in integral form, namely

U(t, t0) = Ua(t, t0) − i
∫ t

t0

U(t, t′)HI(t
′)Ua(t′, t0)dt′ , (10)

where Ua(t, t0) = exp[iHa(t − t0)] is the time-evolution oper-
ator associated with the field-free Hamiltonian, and the time
evolution operator

U(t, t0) = T exp

[
i
∫ t

t0

H(t′)dt′
]

, (11)

where T denotes time-ordering, relates to the full Hamilto-
nian H(t) evolving from an initial time t0 to a final time t.
Alternatively, one may construct the integral equation as

U(t, t0) = U(V)(t, t0) − i
∫ t

t0

U(t, t′)VU(V)(t′, t0)dt′, (12)

where U(V)(t, t0) is the Volkov time-evolution operator, associ-
ated with the Hamiltonian

H(V) =
p̂2

2
+ HI(t). (13)

We wish to calculate the transition amplitude
〈ψp(t)|U(t, t0)|ψ0〉 from a bound state |ψ0〉 to a final continuum
state |ψp(t)〉 with momentum p. Using equation (10) and the
orthogonality between continuum and bound states, it can be
written as

M(p) = −i lim
t→∞

∫ t

−∞
dt′ 〈ψp(t)|U(t, t′)HI(t

′)|ψ0(t′)〉 , (14)

with |ψ0(t′)〉 = exp[iIpt′] |ψ0〉, where Ip is the ionization
potential and we have set t0 = 0. One should note that, apart
from considering a single active electron, no approxima-
tion has been made in the time propagation described by
equation (14). Some approximations and/or further assump-
tions will be employed next.

2.2.1. Strong-field approximation. The SFA, also known as
the Keldysh–Faisal–Reiss (KFR) theory [9–11, 57], can be
obtained by constructing a field-dressed Born series using
equation (12), and inserting it into equation (10).

Physically, the SFA relies upon the assumption that all
bound states apart from the initial state of the system do not
need to be considered. That is, the state of the system at a time
t can be written as

|ψ(t)〉 = |ψ0(t)〉+
∫

dp b(p, t)
∣∣ψp

〉
, (15)

where
∣∣ψp

〉
are the continuum states, and |ψ0(t)〉 is the popu-

lation in the ground state, often written |ψ0(t)〉 = a(t)|ψ0〉. If
the laser field is not intense enough for the ionization to reach
the saturation level, a widespread approximation is a(t) = eiIpt,
which means that the ground-state depletion can be neglected.

2.2.2. Transition amplitudes. For ATI, the lowest nonvanish-
ing term of the Born-type series is obtained if the full time
evolution operator is replaced by the Volkov time evolution
operator U(V)(t, t′) in equation (14). The subsequent term will
include a single interaction in equation (12). This will lead to
two terms that give the amplitude for producing a photoelec-
tron with a particular well-defined momentum,

M(p) = MDir(p) + MResc(p). (16)

4
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The term MDir(p) can be physically interpreted as a direct con-
tribution from electrons that reach the detector with no further
interaction with the core, while MResc(p) is associated with
electrons that are driven back to the parent ion by the laser
field and are subsequently elastically rescattered.

The expression for the direct term is

MDir(p) =
−i

(2π)3/2

∫ ∞

∞
dt E(t)eiS(p,t)eiIpt

×
∫

dr e−i[p+A(t)]·rr cos θψ0(r), (17)

where θ is the polar angle, HI(t) is the length-gauge atom field
interaction and the action reads

S(p, t) =
1
2

∫ t

−∞
dτ [p + A(τ )]2. (18)

The rescattered term is given by

MResc(p) = −
∫ ∞

−∞
dt
∫ t

−∞
dt′E(t′)eiIpt′ e−iS(k,t)eiS(k,t′)

× eiS(p,t)
∫

dk
1

(2π)3

∫
dr′ei(k−p)·r′V(r′)

× 1
(2π)3/2

∫
dre−i(k+A(t′))·rr cos θψ0(r).

(19)

The three steps in the rescattering process delineated in
equation (19) are: (i) ionization at time t to a Volkov state with
canonical momentum k; (ii) propagation in the laser field from
t′ to t, where t > t′; (iii) scattering off the ion to a final Volkov
state with canonical momentum p at time t, where V can be
a model potential for the ionic system in question. It is very
common to calculate the SFA transition amplitudes employ-
ing saddle-point methods, as they simplify the numerical effort
and provide a very intuitive, clear picture in terms of rescat-
tering electron trajectories (for details see, e.g., [58]). How-
ever, the standard saddle-point method selects the rescattering
processes that are exactly along the driving-field polarization.
This will be problematic for initial bound states aligned per-
pendicularly to the field polarization. A discussion of how to
compute these matrix elements explicitly and how to imple-
ment saddle-point methods in the present context is provided
in the appendix.

For early discussions of how to incorporate rescattering in
ATI see references [5, 6]. Further detail about the SFA and
strong-field ionization is provided in the tutorial [59] and in
the review articles [8, 60]. Introducing the term MResc(p) is
also known as the ‘improved SFA’ [61].

2.2.3. Bound-state transitions. The standard formulation of
the SFA method assumes that the active electron occupies a
specific ground state and that it can only transition into contin-
uum states through interaction with the laser. The influence of
other bound states on the dynamics of the system is typically
not considered.

However, if the initial state of the system is excited to
a point where it is within energetic reach of other excited

states, this assumption may become problematic. In the case
of the helium atom excited into the 21P state, particular atten-
tion should be paid to the transition dipole between the 21P
state and the 21S state. Here, the energy gap is relatively
small, approximately 0.0221 a.u. (0.6 eV), and the transi-
tion dipole moment is large, approximately 2.9 a.u. In prin-
ciple, other possible bound-state transitions, such as 21P–11S
or 21P–31S can be more safely ignored as the energy differ-
ence that characterizes these transitions is significantly larger.
Excitation has also been incorporated in the SFA in the con-
text of NSDI [62–67]. For coherent superpositions of states in
the SFA which, however, are only coupled via the continuum
see, e.g., [68].

To incorporate this into the SFA model above, we modify
the system’s state space vector (see equation (15)) as follows:

|Ψ(t)〉 = a21S(t) |ψ21S〉+ a21P(t) |ψ21P〉+
∫

dpb(p, t) |ψp〉 .
(20)

This would modify the first term in equation (16) to

MDir(p) =
−i

(2π)3/2

∑
j

∫ ∞

∞
dt E(t)eiS(p,t)a j(t)

×
∫

dre−i[p+A(t)]·rr cos θψ j(r), (21)

where the index j runs over the excited states to be included in
the calculation. The same modification is made to the expres-
sion for the term MResc(p) in equation (16). The model now
describes ionization from a series of strongly coupled bound
states. We determine the TD behavior of the bound states in a
laser field with the system of coupled equations:

da j

dt
= Ipja j(t) −

∑
i �= j

E(t) · d j−iai(t), (22)

where Ipj is the ionization potential for the excited state j and
d j−i is the matrix element of the dipole transition from one
excited state to another with the orientation of this element
determined by the spatial polarization of the excited orbitals. If
the number of excited states under consideration is two and the
quantity 2E0 · d j−i (where E0 is the maximum field strength) is
much greater than the bound-state energy difference between
the states IP j − IPi , then the system of equations in (22) can be
solved perturbatively [69].

The solution for our helium system is

a0
21S(t) = ie−ĩIpt sin

[∫ t

0
E(t′) · d21S−21P dt′

]
(23)

a0
21P(t) = e−ĩIpt cos

[∫ t

0
E(t′) · d21S−21P dt′

]
, (24)

where Ĩ p is the average energy of the two excited states and
the 0 in the superscript indicates that this solution is to zeroth
order. This means that the energy difference is neglected and
the states are considered as degenerate. The condition for this
solution 2E0 · d21S−21P � IP21P

− IP21S
is not valid in the case

of a finite pulse at the edges of the envelope, but remains
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applicable provided an alternative condition is met: that ω �
IP

21P
− IP

21S
where ω is the field frequency. It can be readily

seen from equations (23) and (24) that the solution for the
perpendicular configuration is

a0
21S(t) = 0

a0
21P(t) = e−ĩIpt.

This is because the 21P–21S transition is not possible due to
the symmetry constraints of the dipole transition in the case of
the perpendicular configuration.

2.2.4. The CQSFA. Instead of constructing iterative schemes
around equation (10), one of which is the SFA, one may also
employ path-integral methods and construct approaches that
incorporate the field and the binding potential on equal foot-
ing. One of such approaches is the CQSFA [35, 46]. It is
constructed from the transition amplitude

M(p f ) = −i lim
t→∞

∫ t

−∞
dt′

∫
dp̃0 〈p̃ f (t)|U(t, t′)|p̃0〉

× 〈p̃0|HI(t
′)|ψ0(t′)〉 , (25)

which is obtained by inserting a closure relation in the initial
field-dressed momentum p̃0 = p0 + A(t′) in equation (10) and
is exact for a one-electron system. Equation (25) takes the sys-
tem from the initial photoelectron bound state |ψ0(t′)〉 to its
final momentum state |ψp(t)〉 = |p̃ f (t)〉, where the tilde indi-
cates field-dressing. The p̃0 = p0 + A(t′) and p̃ f (t) = p f +
A(t), where A(τ ), with τ = t, t′ is the vector potential, denote
the electron’s initial and final field-dressed momenta, respec-
tively. The time-evolution operator U(t, t′) is associated to the
full Hamiltonian, and thus includes the laser field and the bind-
ing potential. We take the interaction Hamiltonian HI(t′) to be
in the length, gauge. Applying time-slicing techniques [70, 71]
gives

M(p f ) = −i lim
t→∞

∫ t

−∞
dt′

∫
dp̃0

∫ p̃ f (t)

p̃0

D′p̃
∫ Dr

(2π)3

× eiS(p̃,r,t,t′)〈p̃0|HI(t
′)|ψ0〉, (26)

where D′p and Dr are the integration measures for the path
integrals [35, 70], and the prime denotes a restriction. The
action and the Hamiltonian in equation (26) reads as

S(p̃, r, t, t′) = Ipt′ −
∫ t

t′
[ṗ(τ ) · r(τ ) + H (r(τ ), p(τ ), τ ]dτ ,

(27)
and

H(r(τ ), p(τ ), τ ) =
1
2

[p(τ ) + A(τ )]2 + V(r(τ )), (28)

respectively. In equations (27) and (28), the intermediate
momentum p and coordinate r have been parameterized with
regard to the time τ and p̃ = p(τ ) + A(τ ).

One should note that no Born-type expansion was used in
the derivation of equation (26). This implies that the CQSFA
cannot be viewed as a field-dressed perturbative series with

regard to the binding potential, and that the distinction between
direct and rescattered electrons is blurred. This is even clearer
when equation (26) is solved using saddle-point methods, i.e.,
we search for values of t′, r and p that render the action (27)
stationary. This gives[

p(t′) + A(t′)
]2

2
+ V(r(t′)) + ṗ(t′) · r(t′) = −Ip, (29)

ṗ = −∇rV(r(τ )) (30)

and
ṙ = p + A(τ ). (31)

Equation (29) yields the energy conservation at tunneling,
and equations (30) and (31) give the subsequent electron
propagation.

We compute equation (25) along a two-pronged contour
that starts in at the complex time t′ = t′r + it′i, goes parallel to
the imaginary time axis, i.e., t′ to t′r, and, subsequently, along
the real time axis from the real ionization time t′r to the final
time t →∞ [72–75]. The first and second arms of the contour
are associated with under-the-barrier dynamics and continuum
propagation, respectively.

In the under-the-barrier part of the contour, we kept the
momentum constant and equal to p0 [4, 48]. This reduces
equation (29) to [

p0 + A(t′)
]2

2
= −Ip. (32)

In the continuum propagation, the action can be simplified
according to the procedure discussed in [35, 46, 53, 76].

The CQSFA transition amplitude obtained using the saddle-
point approximation reads

M(p f ) ∝ −i lim
t→∞

∑
s

{
det

[
∂ps(t)
∂rs(ts)

]}−1/2

× C(ts)eiS(p̃s,rs ,t,ts), (33)

where ps and rs and ts are determined by equations (30)–(32),
respectively. The term in brackets gives the stability of a
specific trajectory, and

C(ts) =

√
2πi

∂2S(p̃s, rs, t, ts)/∂t2
s
〈p + A(ts)|HI(ts)|ψ0〉. (34)

In practice, we use ∂ps(t)/∂ps(ts) instead of the stability factor
in equation (33). This may be obtained employing a Legen-
dre transformation and will not affect the action if the elec-
tron starts from the origin. The continuum propagation is
performed by solving the inverse problem, i.e., given a final
momentum p f (t), we find the initial momentum p0 at the
tunnel exit. This is defined as r0(t′r), where

r0(τ ) =
∫ τ

t′
(p0 + A(τ ′))dτ ′. (35)

A further approximation used here is to take a real tunnel exit

z0 = Re[r0z(t′r)], (36)
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where r0z indicates the component of the tunnel trajectory
along the field polarization direction. This will simplify
the problem and lead to real trajectories in the continuum.
For discussions of how to solve the full complex problem see
[48, 77].

The term 〈p + A(ts)|HI(ts)|ψ0〉 contains the influence of the
initial bound state, i.e., its geometry, and will be important for
the present work. Explicitly,

〈p|HI(ts)|ψ0〉 =
∫

d3r
exp(−ip · r)

(2π)3/2
r · E(ts)ψ0(r), (37)

where
ψ0(r) =

∑
α

cα√
2(2π)3/2

φα(r), (38)

and φα(r) is given by a Gaussian basis set

φα(r) =
∑
v

bvxβx yβy zβz exp
(
−ξv(x2 + y2 + z2)

)
. (39)

For details see [68].
In the CQSFA, one may identify four main types of orbits:

(a) Type 1 orbits behave like short, direct SFA trajectories
that are slowed down by the Coulomb potential. They
leave in the direction of the detector and their transverse
momentum does not change direction.

(b) Type 2 orbits are field-dressed Kepler hyperbolae whose
start times are displaced in half a cycle from those in
type 1 orbits. They start on the ‘wrong’ side and are
turned toward the detector. They are lightly deflected by
the potential and can be loosely associated with the long
SFA orbits. Their transverse momentum does not change
its sign during continuum propagation.

(c) Type 3 orbits are also field-dressed Kepler hyperbolae
starting in the same half cycle as type 2 orbits, but interact
more strongly with the core. Their transverse momentum
changes direction during continuum propagation. They
have no counterpart in the SFA as they depend on the inter-
play between the driving field and the binding potential
and are not embedded in a Born-type method. In previous
work, we have approximated orbit 3 within an analytic
piecewise model in which rescattering is incorporated.
However, mimicking the effect of orbit 3 and accurately
reproducing the spider was only possible by including the
acceleration caused by the Coulomb potential during the
continuum propagation and the Coulomb phase [47]. This
is a substantially different scenario than that encountered
with the SFA, be it direct or rescattered, or in approaches
focused on short-range potentials [78]. In the limit of van-
ishing residual potential for the continuum propagation,
orbits 2 and 3 become degenerate and tend to the long
direct SFA orbit [35].

(d) Type 4 orbits start in the same half cycle as type 1 orbits,
but go around the core before reaching the continuum.
Their behavior is close to that of SFA rescattered tra-
jectories, and they may reach energies of around 10Up.
However, one should notice that the process they undergo
is different and their propagation in the continuum is not
restricted to the field-polarisation axis.

One should note that the energies of orbits 2 and 3 may go
beyond the direct ATI cutoff of 2Up, due to the influence of
the residual potential. This contributes to blur the distinction
between direct and rescattered, as mentioned above. A limi-
tation of the CQSFA is that it does not properly account for
processes involving excited bound states. The basis chosen in
equation (25) by using the closure relation in p̃0 works well for
continuum states but does not reproduce excitation processes
accurately. Still, it does take into account highly excited states
which are strongly coupled with the field and behave similarly
to the continuum. The four types of orbits stated above were
first identified in [34].

3. Results

In the following, we will analyze how different polarisations
in the initial bound states influence angle-integrated photoelec-
tron spectra and PMDs, with emphasis on several counterintu-
itive features. We used a bandwidth-limited mid-IR pulse of
intensity I = 3.2 × 1013 W cm−2, frequency ω = 0.775 eV,
that corresponds to a wavelength λ = 1600 nm, linear polar-
isation along the z direction, with a ponderomotive energy
(Up) of 7.65 eV. Unless otherwise stated, the binding energy
used for this initial state is 3.286 eV (Ip = 0.1238 a.u.). For
this parameter range, we have verified that the electron in the
ground state orbital 1s is not appreciably affected by the IR
pulse in the TDSE solvers.

For the B-spline ADC method and the SFA, the pulse used is
described by a cosine squared envelope for the vector potential

A(t) = −A0

ω
cos2

(πt
T

)
sin(ωt)êz, {−T/2 � t � T/2} (40)

of amplitude A0 and polarization vector êz, and with a pulse
duration T set to 10 cycles (ca 50 fs).

The calculations have been performed using a linear B-
spline knot sequence [43] with a radial box radius of Rmax =
500 a.u. and Nb = 625 radial B-splines. The maximum
angular momentum employed in the monocentric expansion
of equation (3) was lmax = 30. Convergence of the results
with respect to the basis set parameters has been checked.
A complex absorbing potential (CAP) with starting radius
RCAP = 400 a.u. has been used to absorb the wavefunction and
avoid its reflections from the grid boundary. Each and every
B-spline ADC(1) energy-dependentphotoelectron spectra pre-
sented here were calculated by coupling the TD B-spline ADC
method to the t-surff technique.

For the CQSFA, for simplicity we consider a linearly polar-
ized monochromatic wave, whose vector potential is described
by

A(t) = A0 cos ωtêz. (41)

This is a good approximation for long enough pulses. In prac-
tice, we take the field to be over 20 cycles long, and include
ionization events within up to four laser cycles, that is, the
range of ionization times t′ lies within 0 � t′ � 8π/ω. A
restricted temporal unit cell is necessary for practical purposes,
but may introduce some boundary effects. For a complete dis-
cussion see [79]. For Qprop, we have employed a four-cycle
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flat-top pulse with additional linear half-cycle turn on and off
for the comparison to the CQSFA and SFA models. In the
comparison of Qprop with the B-spline ADC model, we have
matched the appropriate pulse of sin2, whose vector potential
is given by equation (40).

3.1. ATI spectra

3.1.1. One and two-electron Schrödinger solvers. We will
start by discussing the angle-integrated ATI spectra obtained
from the numerical solutions of the TDSE employed in
this work, calculated with the diagrammatic B-Spline ADC
method and with the freely available one-electron Schrödinger
solver Qprop [41, 42]. These results are presented in figure 1,
for the parallel and perpendicular initial-state configurations
(upper and lower panel, respectively). For the parallel config-
uration, the spectra obtained with the B-spline ADC method
exhibits a long ramp-like structure extending from near the
ionization threshold up to the high photoelectron energy of
10Up, while the Qprop computations exhibit a low-energy
region followed by a ramp-like decrease from 2Up to 4Up

(see pink shaded region), with a flat plateau up to 10Up. The
high-energy suppression, in the case of TD B-spline ADC, is
caused by the ‘potential’ that the excited/ionised electron expe-
riences, which has contributions from both the Coulomb and
exchange terms calculated with the Hartree–Fock orbitals of
the helium atom. These exchange terms effectively repel the
rescattered electron if it gets too close to the core, and thus
render rescattering less effective. This influence increases with
the photoelectron final energy, as higher-energy electrons must
approach the core more closely. These ramp-like features are
not altered significantly if the bound-state transition 21P–21S
is removed from the B-spline ADC computation (see blue and
green curves).

On the other hand, if the initial 2pstate is aligned perpendic-
ular to the driving-field polarization (lower panel in figure 1),
the computations lead to strikingly different results. For clar-
ity, we have included the parallel-polarized spectrum without
the 21P–21S transition. One should note that, due to selection
rules, this transition is forbidden in the perpendicular configu-
ration. Up to the photoelectron energy of roughly 2.5Up, there
are at most subtle differences, with the Qprop spectrum being
slightly larger than the B-spline ADC spectra. Subsequently,
one sees a steep ramp-like suppression for the (one-electron)
Qprop computation up to 4Up succeeded by a second ramp
of much gentler slope. The B-spline ADC spectra are signifi-
cantly less suppressed for energies higher than 2Up, regardless
of configuration. Thus, in contrast to the parallel-aligned case,
electron exchange appears to enhance rescattering. The results
suggest that exchange effects, which are included in the B-
spline ADC simulation, lead to a decrease of the dependence
of the yield on the direction of the driving field with respect
to the initial atomic polarization, especially in the (approxi-
mately) 2Up–6Up energy region. Interestingly, for the perpen-
dicularly polarized initial state the B-spline ADC computa-
tion exhibits multiple ramps instead of the monotonic behavior
identified for parallel alignment. Thereby, one may identify
two ramps, for photoelectron energy ranges 2Up � Ek � 4Up

Figure 1. Angle-integrated photoelectron spectra computed for
excited helium (I p = 0.1238 a.u.) with numerical solutions of the
TDSE, for pulses with peak intensity I0 = 3.2 × 1013 W cm−2,
(Up = 7.65 eV), and wavelength λ = 1600 nm. The orange
(dashed) curve gives the one-electron computation, performed with
the free software Qprop [41, 42], while the green (solid) and the
blue (dotted) curves have been computed with the diagrammatic
B-Spline ADC method including and excluding the bound-state
transition 21P–21S, respectively. For the Qprop calculation a
four-cycle sin2 pulse was used, while for the B-spline ADC a
ten-cycle sin2 pulse was taken and pulse length of 53 fs. The upper
and lower panels have been calculated for z (parallel) and x
(perpendicular) orientation of the initial 2p bound states of helium
with regard to the driving-field polarization. The blue curve in the
lower panel has been computed for parallel polarization, but
removing the bound-state transitions, the most important among
them being 21P–21S. Each curve has been normalized to its largest
value to facilitate a qualitative comparison. The pink and violet
shaded areas highlight the photoelectron energy ranges
2Up � Ek � 4U p and 4U p � Ek � 6U p, respectively.

and 4Up � Ek � 6Up, respectively. Furthermore, in compar-
ison to the parallel-aligned case (blue curve), the B-spline
ADC spectrum computed for the perpendicular configuration
(green curve) exhibits a decrease of one order of magnitude for
energies higher than 4Up even in the absence of the 21P–21S
transition. Still, this behavior occurs for much larger energies
than those in the Qprop spectrum. The remarkably different
behavior from Qprop suggests a multielectron character for the
second ramp as well.

3.1.2. Comparison with orbit-based methods. For that rea-
son, we will now compare the outcome of Qprop with that
of semi-analytical, orbit-based methods. We will start by
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discussing the spectra obtained with the SFA, which is shown
in figure 2. In all cases, the energy regions in the SFA spec-
tra can be clearly associated with direct and rescattered ATI,
with a distinct cutoff at photoelectron energy 2Up followed
by long plateaus up to the rescattered ATI cutoff of 10Up.
The direct contributions dominate up to approximately 4Up,
with the plateau prevailing for higher energies. For perpendic-
ular alignment, the plateau is much more suppressed than in
the parallel-aligned case. This is consistent with the picture
put across by the SFA, that rescattering occurs for a small
angular range around the polarization axis. Because there is
not much probability density with which the returning elec-
tronic wave packet can overlap, the resulting signal will be
suppressed. This adds up to an overall suppression that occurs
for similar reasons at the instant of ionization. Since tunnel-
ing is highly directional and occurs predominantly along and
in the vicinity of the polarization axis, the overall signal will
be around two orders of magnitude weaker in the perpen-
dicular case. We have, however, normalized the yield in the
lower panels of the figure in order to perform a qualitative
comparison.

In comparison with the Qprop calculation, the SFA plateau
is strongly suppressed for parallel orientation, although they
follow the same trend (see upper panel in figure 2). In fact,
it is noteworthy that there are only two orders of magni-
tude difference between the direct and rescattered signal in
the Qprop case, while for the SFA this difference amounts to
four orders of magnitude. Moreover, the behavior in the direct
region is much flatter than for the SFA, with a ramp for pho-
toelectron energies between 2Up and 4Up (see pink shaded
region). Interestingly, including the 21P–21S bound-state tran-
sition in the SFA as discussed in section 2.2.1 leads to sub-
tle changes in the plateau, but does not alter its overall shape
or intensity.

For perpendicular-aligned initial states (lower panel in
figure 2), the Qprop and SFA computations are much more
similar, with a steep decay in several orders of magnitude for
2Up � Ek � 4Up (dubbed ‘mid-energy ramp’) followed by a
plateau. Still, in that energy region the TDSE result always
follows that of the SFA from above, and exhibit a ramp-like
structure. One should note that this mid-energy ramp appears
in a single-active electron setting. This is a key difference with
regard to the behavior seen for the second ramp in the B-spline
ADC computations; see discussion of figure 1. The mid-energy
ramp is associated with hybrid orbits, which are missed by the
SFA, and will be analyzed next.

In figure 3, we plot the spectra obtained with Qprop
against those from the CQSFA. The spectra obtained with
the CQSFA exhibit an almost constant, much higher plateau,
whose onset occurs for energies immediately higher than
2Up. This is in stark contrast with the ramp-like behavior
obtained in the previous cases. Furthermore, a direct compar-
ison of the parallel and perpendicular configurations shows
a suppression of at least one order of magnitude for the
plateau in the latter case. This is much less than that observed
in all other methods, and it is also curious that the par-
allel and perpendicular spectra exhibit very similar shapes.

Figure 2. Angle-integrated photoelectron spectra computed for
excited helium (I p = 0.1238 a.u.) using Qprop (orange and brown
dotted curves for parallel and perpendicular cases, respectively) and
the SFA (remaining curves), for the same peak-field intensities and
wavelengths as in the previous figures. For the Qprop calculation a
flat-top four cycle pulse with an additional half a cycle turn on and
off was used, while for the SFA we have taken only a single cycle.
Each curve has been normalized to its largest value to facilitate a
qualitative comparison. For the perpendicular configuration, the
SFA spectrum is one order of magnitude smaller than its parallel
counterpart in the direct region (energies smaller than 2Up and the
rescattered plateau is two orders of magnitude smaller. The top
panel (parallel alignment) also shows all scattering (direct and
rescattered) contributions in the SFA for the bound coupled state,
2s2p (purple wide dashed curve). The pink and violet shaded areas
highlight the photoelectron energy ranges 2U p � Ek � 4Up and
4Up � Ek � 6U p, respectively.

This suggests that, for the parameter range employed, and in
particular the ionization potential Ip = 0.1238 a.u. of the
excited states, the CQSFA orbits are behaving in an unusual
way, which is much more dictated by the binding potential than
by the laser field.

A further investigation is presented in figure 4, in which, in
addition to the previous curves, calculated for excited helium,
we have included a CQSFA computation for a slightly larger
ionization potential (Ip2 = 0.1750 a.u.) and 2p initial states par-
allel and perpendicular to the laser-field polarization. This is
quite different from the behavior we have observed if the cor-
rect ionization potential (Ip1 = 0.1238 a.u.) is taken. Thereby,
one can see that, for the perpendicular and parallel-oriented
cases, the spectra practically overlap up to an energy equal
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Figure 3. Angle-integrated photoelectron spectra computed for
excited helium (I p = 0.1238 a.u.) in initial 2p states oriented
parallel (z) and perpendicular (x) to the laser-field polarization,
using Qprop (dotted orange and brown lines) and the CQSFA
(purple and red lines, dashed and solid respectively), for the same
peak-field intensities and wavelengths as in figure 1. For the Qprop
calculation, a flat-top four cycle pulse with an additional half a cycle
turn on and off was used, while for the CQSFA, we have considered
ionization events within one cycle of a monochromatic field. Each
curve has been normalized to its largest value to facilitate a
qualitative comparison. The pink and violet shaded areas highlight
the photoelectron energy ranges 2U p � Ek � 4U p and
4U p � Ek � 6U p, respectively.

to 2Up. However, for the perpendicular case there is a long
ramp in the photoelectron energy region 2Up � Ek � 4Up

followed by a strongly suppressed ATI plateau. This behav-
ior is in better qualitative agreement with the Qprop out-
come than that obtained for the correct ionization potential.
Next, we will analyze these behaviors in more detail using
PMDs.

3.2. Photoelectron momentum distributions

In the following, we will have a closer look at the electron
dynamics by inspecting PMDs. For simplicity, we restrict
ourselves to a one-electron scenario employing the CQSFA
and using Qprop [41, 42] as a benchmark. These results
are presented in figure 5, for parallel and perpendicularly
polarized helium (upper and lower rows, respectively) in a
four-cycle trapezoidal pulse. There is an overall suppres-
sion of the signal in the perpendicular configuration, but in
the present discussion we will focus on qualitative features
and the physics behind them. All distributions exhibit well-
defined ATI rings and several holographic structures, such
as a spider-like pattern around the polarization axis, fan-
shaped fringes close to the ionization threshold and spiral-
like patterns perpendicular to the driving-field polarization.
These structures have been discussed in previous publica-
tions [33, 46–48] and have been observed in numerical com-
putations and experiments (for details see the recent review
article [4]). There are, however, some qualitative differences
between the CQSFA and the TDSE computations. First, the
holographic patterns in the TDSE outcome are asymmetric
with regard to the p⊥ axis and the ATI rings are less sharp.
This asymmetry is very likely caused by a strong bound-state

Figure 4. Angle-integrated photoelectron spectra computed for
excited helium using Qprop (orange and brown dotted curves) and
the CQSFA (purple and red curves, wide dashed and solid
respectively) computed for excited helium (I p1 = 0.1238 a.u.) using
the same parameters as in figure 3, but with two additional (blue and
green, dot-dashed and small dashes respectively) curves computed
using the CQSFA for a slightly larger ionization potential
(Ip2 = 0.1750 a.u.). Each curve has been normalized to its largest
value to facilitate a qualitative comparison, except for those
computed for the larger ionization potential I p2. The pink and violet
shaded areas highlight the photoelectron energy ranges
2Up � Ek � 4U p and 4U p � Ek � 6U p, respectively.

depletion, which is present in the TDSE case. Depletion will
affect the probabilities associated with different ionization
events such that the later events will be suppressed, and this
will cause distortions in the patterns, making the distributions
more similar to those from a few-cycle pulse. As such, we
have verified that the initial excited-state population is quickly
reduced for the parameter range employed (not shown). This
effect has not been incorporated in the CQSFA. The CQSFA
also has some asymmetry for a different reason. Despite using
a monochromatic field, we must restrict the ionization events
to a finite temporal range, which introduce some artificial
asymmetry depending on how this range is chosen. This can
be eliminated by the incoherent averaging procedure described
in [79].

Another noteworthy aspect in the PMDs are superim-
posed circular regions of radius 10Up centered at (p‖, p⊥) =
(±2

√
Up, 0), which overlap at (p‖, p⊥) = (0, 2

√
Up) along the

perpendicularmomentum axis. The boundaries of such regions
determine a ridge, which is a well known indicator of rescat-
tering. The rescattering ridge is present in the CQSFA compu-
tation, regardless of the orientation of the initial orbital (see
middle panels in the figure), but is strongly suppressed for
the TDSE in the case of perpendicular orientation (see lower
left panel). This suppression is not isotropic, and remnants
of the ridge can be seen around the axis p⊥ perpendicular to
the driving-field polarization. If, on the other hand, we con-
sider a slightly larger ionization potential for the CQSFA, we
also observe a very faint rescattering ridge for the perpendic-
ular case (see right column in the figure). In addition to that,
there are suppressions of the photoelectron signal around the
p⊥ axis, which are stronger for perpendicular alignment. Sub-
tler features are a spilling of the spider-like structure beyond
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Figure 5. PMDs computed using the one-electron Schrödinger solver Qprop (panels (a) and (d)) and the CQSFA (panels (b) and (e)) with all
relevant orbit types for excited helium at the given Ip = 0.1238 a.u. In panels (c) and (f), we have considered the CQSFA and a slightly larger
ionization potential (I p = 0.175 a.u.) as a test case. The upper and lower rows have been computed for initial bound states aligned parallel
and perpendicular to the driving-field polarization, respectively. For Qprop, we have used a four-cycle flat-top pulse with an additional half
cycle turn on and off. For the CQSFA, we have approximated the driving field by a monochromatic wave. In all cases, we considered a
driving-field peak intensity I0 = 3.2 × 1013 W cm−2 (Up = 7.65 eV), and wavelength λ = 1600 nm. The thick circular dashed line
indicates the direct ATI cutoff 2Up and the yield in each panel has been normalized to its maximum value, but there are roughly between one
and two orders of magnitude difference between the parallel and perpendicular configuration. Furthermore, the yield for the perpendicular
case is suppressed by a factor of 102 for CQSFA and 10 for Qprop, respectively. The green dashed rectangle on panels (d) and (f) indicate
the suppressed rescattering ridge for a particular perpendicular momentum, whereas the dashed triangle shows off axis suppression in panels
(b), (c), (e) and (f). Finally, the red squares seen on all panels show the spilling beyond the 2Up cutoff as mentioned above.

the direct 2Up cutoff and a wedge-like suppression (shown on
figure 5 by the dashed square and triangle, respectively.) along
the p‖ axis for the perpendicular bound-state configuration in
all approaches.

We will next analyze the above features in terms of CQSFA
orbits. With that aim in mind, in figure 6, we plot PMDs
obtained using individual CQSFA orbits. The plots illustrate
the momentum region they occupy, and how they are influ-
enced by the parallel and perpendicular configurations. We
will commence by looking at the parameters in figures 5(b)
and (e), which, apart from an overall suppression of roughly
two orders of magnitude in the perpendicular case, look qual-
itatively similar.

Orbits 1 and 2 lead to approximately elliptical PMDs,
whose major axis is along p‖ and which are mostly constrained
by the 2Up direct ATI cutoff. This is expected as both orbits
behave primarily as direct SFA orbits. Spilling beyond this cut-
off occurs mostly along the driving-field polarization and is
caused by the presence of the Coulomb potential. For perpen-
dicular orientation, there is a wedge-like suppression along the
p‖ axis for the contributions of orbit 1 (see figure 6(b) in com-
parison with figure 6(a)), whose angular range broadens as |p‖|
increases. This effect can be understood as follows: if an elec-
tron propagates along orbit 1, its final and initial momentum
will be similar, and, for high enough final momenta, close to
the standard SFA [46]. Thus, if the electron is freed along the
field-polarization axis, it will continue to propagate along this
direction. For small angles, its propagation direction will not
change significantly. The 2p orbital is strongly directional, so
that if it is oriented perpendicular to the laser-field polariza-

tion, tunneling along the p‖ axis will be hindered. The wedge-
like shape comes from the fact that this is not a perfect map-
ping, and the final and initial momenta will only coincide for
large values of p‖. Still, the above discussion will approxi-
mately hold. In contrast, as orbit 2 is essentially a field-dressed
hyperbola, the binding potential plays a stronger role and the
transverse momentum mapping is non-trivial. In this case, the
wedge-like feature is absent.

The PMDs associated with orbits 3 and 4, shown in the
bottom rows in figure 6, occupy momentum regions within
a broader angular range than the previous single-orbit distri-
butions. This is due to them undergoing a stronger deflection
and interaction with the core. Previous studies have shown that
orbit 3 has a hybrid character [33, 47], with no counterpart
in the SFA, while orbit 4 behaves essentially like a rescat-
tered orbit. The PMD associated with orbit 3 mainly occupies
the momentum region defined by the overlapping rescatter-
ing ridges, with a slight spilling near the polarization axes. In
both parallel and perpendicular configurations, there is a sup-
pression along p‖ = 0, which, however, is more pronounced in
the latter case. Orbit 4 leads to a PMD with clear rescattering
ridges for both parallel and perpendicular configurations and
a caustic structure at the boundary. This indicates that, for the
present parameter range, the dynamics associated with orbit
4 are not predominantly located along the polarization axis,
as would be expected in an SFA treatment of rescattered tra-
jectories. On the other hand, if we consider a slightly larger
ionization potential, there is a much stronger suppression of
the ridge for orbit 4 and of the signal around the p⊥ axis for
orbit 3. This is illustrated in figure 7.
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Figure 6. Single-orbit electron momentum distributions for excited helium (I p = 0.1238 a.u.) using the same field parameters as in figure 5
and a single cycle, for parallel and perpendicular alignment with regard to the laser-field polarization. From left to right, we present the
contributions of orbit 1 (panels (a) and (b)), orbit 2 (panels (c) and (d)), orbit 3 (panels (e) and (f)) and orbit 4 (panels (g) and (h)), where the
first column is the parallel configuration and the second is the perpendicular configuration. The thick circular dashed lines indicate the
direct-ATI cutoff energy 2U p, and the yield on each panel has been normalized to its maximum value, but there is an overall suppression of
over one order of magnitude for the perpendicular case. Orbits 3 and 4 are not defined in the gray regions displayed in panels (e), (f), (g)
and (h).

These are great examples of how rescattering may no longer
be restricted to the polarization axis due to the Coulomb poten-
tial. For the correct value of the ionization potential associated
with the excited state, the CQSFA tunnel exit is located in a
region for which the Coulomb potential is dominant. This sug-
gests that orbit 4 will behave in a much less directional way
than what one expects within the SFA framework. It will be
able to probe orbitals oriented perpendicular to the driving-
field polarization, and the rescattering ridge will be present. On
the other hand, for higher ionization potentials, the tunnel exit
will be located in the region for which the field is dominant.
This will reduce the angular range for which rescattering may

occur, and will cause a strong suppression for photoelectron
energies higher than 2Up.

This issue is illustrated in figure 8, which shows that this
transition depends quite critically on the interplay between
the ionization potential and the ponderomotive energy. For
the ionization potential Ip = 0.15 a.u., which is slightly larger
than that of excited helium (orange curve), the binding poten-
tial dominates. This causes orbit 4 to leave in a perpen-
dicular direction to the field, until approximately 2 a.u.
Subsequently, the orbit leaves and returns to the core region
propagating in the expected direction, that is, parallel to the
driving-field polarization. Still, the large initial transverse
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Figure 7. Single-orbit distributions calculated for orbits 3 (first row) and 4 (second row) using the CQSFA for the same field as in figure 5
and a single cycle, but considering a slightly higher ionization potential (I p = 0.175 a.u.). The first columns panels (a) and (c) have been
computed for parallel case. Whereas perpendicular alignment with regard to the driving-field polarization, is the second column, panels (b)
and (d) and the circular lines indicate the direct ATI cutoff at energy 2U p across all panels. The two upper panels have been normalized to
their highest value, but there is a difference of one to two orders of magnitude between the parallel and perpendicular cases. In the lower
panels the same scale was used.

momentum acquired by orbit 4 makes it much less directional
than what is predicted by the SFA. This means that, for that
parameter range, this orbit will also probe orbitals with perpen-
dicular alignment. This explains the similar CQSFA spectra in
the previous section, and the prominent rescattering ridges in
figures 6(h) and 5(e). In contrast, if the tunnel exit is located
in a region for which the field is dominant (blue curve), orbit 4
will behave in a much more directional way, practically along
the polarization axis. This will cause an overall suppression for
initial bound states oriented perpendicular to the driving-field
polarization. Nonetheless, there are still momentum compo-
nents in the perpendicular direction and the orbit does not leave
parallel to the field. This, together with the presence of inter-
mediate orbits, leads to remnants of the rescattering ridge in
the PMDs.

Therefore, even in a single-electron setting, the residual
binding potential influences rescattering. It gives rise to orbits
of hybrid character, and, in some instances, makes ioniza-
tion and/or recollision deviate from the driving-field polariza-
tion axis. Hybrid orbits are absent in Born-type approaches
such as the SFA, and will contribute for the anisotropic sup-
pression in the rescattering ridge reported in this work. Ion-
ization, and in some cases propagation, perpendicular to the
laser-polarization axis may occur and will partially hinder
the suppression of the rescattered ATI signal. One should
note, however, that the CQSFA results for excited helium
strongly deviate from the TDSE computations. Interestingly,
the TDSE agrees more with the CQSFA if a higher (artificial)
ionization potential is taken in the CQSFA.

Figure 8. The behavior of orbit 4 for different ionization potentials
(Ip = 0.150 a.u. and Ip = 0.175 a.u.), plotted over one cycle of the
driving field and calculated for the same driving-field parameters as
in figure 6. The tunnel exit for the orange curve occurs at 5.46 a.u. in
parallel direction, while for the blue curve it is located at 5.89 a.u.
The final momentum components associated with the orange and
blue curves are 1.90 a.u. in the parallel and 0.53 a.u. in the
perpendicular direction.

4. Conclusions

In this work, we have probed excited helium in initial 2p-state
configurations parallel and perpendicular to a mid-IR, linearly
polarized field. We use different numerical methods, namely
the B-spline ADC [43] and the one-electron Schrödinger
solver Qprop [41, 42], whose outcomes were compared to
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those of two semi-analytic methods: the SFA and the CQSFA.
Our main goal was to understand the limitations of the rescat-
tering model in its simplest form, i.e., that dictated by the SFA,
and what subtleties must be taken into consideration. Overall,
it is noteworthy that different computations may lead to spectra
whose shapes and intensities are quite distinct.

The SFA predicts a sharp decrease in the ATI signal for
energies above the direct ATI cutoff 2Up for all cases, and
a strong suppression in the high-energy ATI plateau, which
extends up to the energy of 10Up, for the perpendicular ini-
tial state. This is due to tunnel ionization and recollision being
located around the field polarization axis. This implies that
both processes are suppressed due to the initial-state geom-
etry. First, there will not be a substantial probability density
to undergo tunneling and, upon the act of rescattering, there
will not be a significant overlap of the returning wavepacket
with the orthogonally oriented bound state. Furthermore, in
the SFA no changes that may occur in the core and alter
its geometry are incorporated. This sharp decrease is simi-
lar to that resulting from changing the driving-field polariza-
tion, instead of that of the initial bound state. Any deviations
from those patterns mean that the dynamics are more intricate,
either because ionization or recollision may occur off axis,
or because processes involving the core must be taken into
consideration.

The results presented in this paper reveal a subtler pic-
ture, with the angle-integrated ATI spectra exhibiting ramp-
like structures in some computations. This is most striking for
the B-spline ADC computation, which goes beyond a single-
active electron and has the least degree of physical approx-
imations. The B-spline ADC spectra exhibit multiple ramps
and a smooth transition from direct to rescattered ATI, both for
parallel and perpendicular orientation. A ramp-like structure is
expected if there are many superimposed processes and/or sub-
stantial depletion. This will tend to weaken effects caused by
the initial bound-state geometry or suppress high-energy fea-
tures by removing parts of the bound-state population via sev-
eral channels. It could also be caused by mechanisms rendering
rescattering less effective.

It is noteworthy that the B-spline ADC spectra behave
in strikingly different ways from those obtained with the
one-electron computations. The spectra from Qprop and the
analytical models exhibit a much more obvious transition
from the direct to the rescattered regimes, while the B spline
ADC spectra present a continuous ramp. Removal of a spe-
cific bound-state excitation channel (21P–21S) in the B-spline
ADC influences the spectra. However, the changes are too
subtle to justify all the discrepancies. The current results
suggest that in the parallel-aligned case the presence of
electron exchange renders rescattering less effective by intro-
ducing repulsive effects, while for the perpendicular-aligned
configuration multielectron effects enhance tunneling and
low-energy rescattering. Because exchange is non-local, it
renders both effects less directional, which decreases the
suppression in the perpendicular case. Interestingly, a suppres-
sion of one order of magnitude between parallel and perpen-
dicular polarised initial p states has also been observed for ATI
spectra computed for argon using the TD density functional

theory (TDDFT) [80]. At the ADC(1) level at which our sim-
ulations were done, we are close in accuracy to the TDDFT,
and both computations incorporates electron exchange. This
suggests that rescattering in ATI is a delicate effect that probes
the fine details of the core structure and core–photoelectron
interaction including its non-local (exchange) component. The
influence of electron exchange will also be energy depen-
dent. The closer to the core the rescattering electron gets, the
higher the photoelectron energy will be. This also means that
exchange effects will become increasingly important, leading
to a ramp.

Still, even for single-electron computations, the spectra
exhibit quite different features, depending on what is included
or left out. For instance, in the parallel-aligned case, the
SFA spectrum shows a much stronger drop in signal for the
plateau than that of Qprop. In the perpendicular-aligned sce-
nario, the Qprop outcome follows the SFA spectrum from
above in the direct region, and decays sharply after the direct
ATI cutoff. In contrast, in the CQSFA the plateau is over-
estimated unless an artificially large ionization potential is
taken. Moreover, it varies much less dramatically with the
initial states’ orientation than all other methods considered
in this work.

The features mentioned above can be understood in greater
depth by looking at angle-resolved PMDs and by analyzing the
electron orbits involved. This analysis has been performed for
the CQSFA and Qprop. The agreement is good for the main
features, such as the rescattering ridge and a suppression near
the polarization axis that occurs for the perpendicular con-
figuration. However, the holographic patterns are much more
irregular for Qprop than for the CQSFA. Furthermore, in the
perpendicular configuration the rescattered ATI signal is much
more suppressed for Qprop. This includes most of the signal
beyond the energy of 2Up and the rescattering ridge. A better
agreement is obtained if the ionization potential is artificially
increased in the CQSFA computation.

The irregularities in the Qprop holographic patterns are
explained by the huge amount of bound-state depletion, which
favors certain events over others and compromises the contrast
in the quantum interference patterns. Furthermore, there may
be other mechanisms through which the electron is freed in the
continuum, such as over-the-barrier ionization and coupling
with highly excited states. These features are not incorporated
in the CQSFA. The over-enhancement of the rescattered con-
tributions in the perpendicular case is due to the Coulomb
potential being dominant upon ionization, for the CQSFA orbit
type that leads to the rescattering ridge. This introduces a large
perpendicular momentum component in the orbits, so that they
initially tunnel in a perpendicular direction and may return
farther away from the polarization axis.

Further studies indicate that a tunnel exit in a region
for which the field dominates, which can be achieved with
a slightly larger ionization potential, will alter this behav-
ior. In this case, the orbit will be more localized around
the polarization axis, so that tunneling and rescattering
will be suppressed for perpendicular configurations. Inter-
estingly, this suppression is closer to the behavior observed
for the TDSE computation. The TDSE outcome will be
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influenced by ac Stark shifts, additional ionization chan-
nels, bound-state broadening and over-the-barrier ionization,
which are not included in the CQSFA. Support for this
assumption is provided by further TDSE computations using
weaker binding energies, which exhibit a rescattering ridge
for the perpendicular-aligned initial states (not shown). Some
combination of these effects likely leads to the rescatter-
ing behavior observed in the CQSFA when a larger ion-
ization potential is used. Discussions of how to include
Stark shifts in the SFA are provided in [81, 82]. For a pro-
posal of how to measure Stark shifts in excited helium,
see [83, 84].

If, on the one hand, this suggests that the CQSFA may need
modifications for highly excited, loosely bound states, on the
other hand this is a nice illustration of how the interplay of
the binding potential and the external laser field may lead to
counterintuitive behaviors and move rescattering or ionization
away from the driving-field direction. This, together with the
core dynamics effects observed for the B-spline ADC spec-
tra, shows that there may be other possibilities for imaging
than those based exclusively on the field exploring bound-state
geometry or driving-field shapes. Finally, one should note that
preparing targets in excited and oriented states is within exper-
imental reach. For instance, one may use the magneto-optical
trap recoil ion momentum spectroscopy technique (see, e.g.
[85, 86] in the context of electron collisions and [87] for mul-
tiply ionized Rubidium in a strong elliptically polarized field).
Moreover, one may prepare the 21P state of helium either by
resonant excitation from the metastable 21S state [88, 89], or
by a direct extraction from the ground state [90, 91]. The polar-
ization of the excited state can be controlled as described in
[92], and the lifetime of the 21P state is several orders of mag-
nitude larger than the timescales involved in the present work.
Usual excitation results in a superposition of the ground and
excited state helium. However, for the parameters employed
in this work, the ground state is too strongly bound to result
in any appreciable ATI. Therefore, we are probing the excited-
state population and whatever population stays in the ground
state is simply lost for us.
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Appendix. SFA matrix elements

In this appendix, we provide the main steps for calculating the
integrals

I1 =

∫
dr eik·r V(r) (42)

and

I2 =

∫
dr e−ik·rr cos θψ0(r) (43)

in equations (17) and (19), for the effective binding poten-
tial (7). To avoid singularities in the Fourier transform of
this potential, it is multiplied with a damping factor: V(r) →
V(r) × e−εr. Numerical simulations show that this factor does
not distort the shape of the ATI spectrum, although it can shift
its overall magnitude; for this study we have chosen ε = 1.0.
For other methods to treat this singularity see, e.g., reference
[93].

Using the spatial representation

Ψ0(r) = Rn0l0 (r)Yl0m0 (Ω)

of the initial state, where Ω is the solid angle, equations (42)
and (43) can be simplified as

I1 = −4π

[
1

ε2 + k2
+

a1

ε2 + a2
2 + k2

+
2a3a4

(ε2 + a2
4 + k2)2

+
a5

ε2 + a2
6 + k2

]
(44)

I2 =
(4π)3/2

√
3

∑
lm

i−lYlm(Ωk)
∫

dr r3Rn0l0 (r) jl(kr)

×
∫

dΩ ∗
lm(Ω)Y10(Ω)Yl0m0 (Ω), (45)

where we have inserted the damping factor into equation (7),
substituted cos θ by a spherical harmonic and used the
multipole expansion for the exponential function in three
dimensions. In equation (45), the solid angle Ω is defined in
coordinate space and the solid angle Ωk with regard to the
intermediate momentum k.
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The spatial radial integral can be solved analytically for an
initial state described by a hydrogenic wave function. For the
ground state (1s) we use

R10(r) = 2Z3/2e−Zr,

for the excited state (2s) we have

R20(r) =
Z3/2

√
2

(1 − Zr/2)e−Zr/2,

and for the polarizable excited state (2p) we use

R21(r) =
Z5/2

2
√

6
re−Zr/2,

where Z is the nuclear charge.
For the ground state 1s, where l0 = 0, the sum in

equation (45) is restricted to l = 1 and the spatial integral reads
as

2Z3/2
∫

dr r3e−Zr

(
sin(kr)
(kr)2

− cos(kr)
kr

)
=

16Z5/2k(
Z2 + k2

)3 .

Similarly, for 2s we obtain

Z3/2

√
2

∫
dr r3e−Zr/2(1 − Zr/2)

(
sin(kr)
(kr)2

− cos(kr)
kr

)

=
2048kZ5/2(2k2 − Z2)

√
2
(
Z2 + 4k2

)4 .

For the excited state 2p, where l0 = 1, the sum over l
runs from 0 to 2, giving the following three expressions in
ascending order of l

Z5/2

2
√

6

∫
dr r3 e−Zr/2 sin(kr)

k
=

Z5/2

2
√

6

12Zk(Z/2 − k)(Z/2 + k)

k
(
Z2/4 + k2

)4

Z5/2

2
√

6

∫
drr3e−Zr/2

(
sin(kr)

k2r
− cos(kr)

k

)

=
Z5/2

2
√

6

(
2(3(Z/2)2 − k2)

k
(
(Z/2)2 + k2

)3

− 6((Z/2)4 − 6(Z/2)2k2 + k4)

k
(
(Z/2)2 + k2

)4

)

Z5/2

2
√

6

∫
dr r3e−Zr/2

(
3 sin(kr)

k3r2
− sin(kr)

k
− 3 cos(kr)

k2r

)

=
Z5/2

2
√

6
[A1(Z, k) −A2(Z, k) −A3(Z, k)] ,

with

A1(Z, k) =
3Z

k2
(
(Z/2)2 + k2

)2

A2(Z, k) =
12Zk(Z/2 − k)(Z/2 + k)

k
(
(Z/2)2 + k2

)4

and

A3(Z, k) =
3Z((Z/2)2 − 3k2)

k2
(
(Z/2)2 + k2

)3 .

The angular integral of the product of three spherical har-
monics is given by the product of Clebsch–Gordan coefficients
(CG), whose general form reads as∫

dΩ Y∗
l1m1

(Ω)Yl2m2 (Ω)Yl3m3 (Ω)

=

√
(2l2 + 1)(2l3 + 1)

4π(2l1 + 1)
CG(l2, l3, l1; m2, m3, m1)

× CG(l2, l3, l1; 0, 0, 0).

If the initial state is perpendicularly polarized, then the
angular part Yl0m0 (Ω) in equation (45) will have some combina-
tion of m0 = 1,−1. Therefore, the only nonzero contribution
to the rescattering term will come from the element in the sum-
mation for which m = 1,−1. One should note that, so far, the
rescattered ATI transition amplitude (19) incorporates all pos-
sible paths for this three-step process are integrated over, all
possible ionization times for the ionization (when the laser is
active) and rescattering processes, and all the possible interme-
diate Volkov states with canonical momentum k. The integrals
in equation (19) can be calculated using saddle-point methods,
which simplify the numerical effort involved and are easily
relatable to an intuitive, orbit-based picture [14, 58, 94]. How-
ever, depending on the problem at hand care must be taken. If
the saddle approximation is used in all three dimensions, then
kx = 0 and ky = 0, this constrains the vector k to be fixed in
the z-direction, leaving no contribution at all and not enabling
meaningful comparisons to the numerical simulation results
to be made. Physically, this implies that only those rescatter-
ing processes that occur exactly along the laser polarization
axis are included in this approximation, and the remaining
processes are selected out. For discussions in the context of
molecules see [95].

We therefore use the saddle point approximation for just
two dimensions in the integral and numerically integrate over
the dimension of the atomic polarization (chosen in the x
direction). The action can be expanded in three dimensions,
so that

S(k; t, t′) =
1
2

∫ t

t′
dt′′

[
(kz + Az(t′′))2 + k2

x + k2
y

]
.

Each variable in the integrand that we approximate is sub-
stituted by its stationary value obtained with the saddle-
point approximation, obtained setting the derivative of the
action is equal to zero. This gives

kst
z = − 1

t − t′

∫ t

t′
dt′′Az(t

′′) (46)

kst
y = 0, (47)

for ∂S(k; t, t′)/∂kz = 0 and ∂S(k; t, t′)/∂ky = 0, respectively.
For each dimension in which we use the approximation, we
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make the following substitution∫
dk

[
2π

α+ i(t − t′)

]1/2

, (48)

whereα is a small parameter to avoid a singularity when t → t′.
If the saddle point approximation is used in three dimensions,
then this parameter is not necessary unless the initial state has
p symmetry. This is because the exponent in the last integral
of equation (19) goes to zero in the limit when t → t′ and the
spherical Bessel function of such an argument tends to zero
for all orders apart from for j0—this function only appears in
the summation for an initial p state. Thus, modifying (45) with
(46)–(48), we obtain

MResc(p) = −
∫ ∞

−∞
dt
∫ t

−∞
dt′

[
2π

α+ i(t − t′)

]
E(t′)

× eiIPt′ e−iS(ksp
z ;t,t′)eiS(p,t)

∫
dkxe−iS(kx ;t,t′)

× 1
(2π)3

∫
dr′ ei(k−p).r′V(r′)

× 1
(2π)3/2

∫
dr e−i(k+A(t′)).r cos θψ0(r),

where k = ksp
z ẑ + ksp

y ŷ + kx x̂. This specific approach is being
used both for parallel and perpendicular bound-state orienta-
tion. This integral was also performed in [96].
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