1,458 research outputs found

    Noncontacting devices to indicate deflection and vibration of turbopump internal rotating parts

    Get PDF
    Published report discusses feasibility of ultrasonic techniques; neutron techniques; X-radiography; optical devices; gamma ray devices; and conventional displacement sensors. Use of signal transmitters in place of slip rings indicated possible improvement and will be subject of futher study

    Inverting the Pendulum Using Fuzzy Control (Center Director's Discretionary Fund (Project 93-02)

    Get PDF
    A single pendulum was simulated in software and then built on a rotary base. A fuzzy controller was used to show its advantages as a nonlinear controller since bringing the pendulum inverted is extremely nonlinear. The controller was implemented in a Motorola 6811 microcontroller. A double pendulum was simulated and fuzzy control was used to hold it in a vertical position. The double pendulum was not built into hardware for lack of time. This project was for training and to show advantages of fuzzy control

    Metal Ion Complexes of N,N′-Bis(2-Pyridylmethyl)-trans-1,2-Diaminocyclohexane-N,N′-Diacetic Acid, H2bpcd: Lanthanide(III)–bpcd2– Cationic Complexes

    Get PDF
    The synthesis and characterization of N,N′-bis(2-pyridylmethyl)-trans-1,2-diaminocyclohexane-N,N′-diacetic acid (H2bpcd) cationic complexes of La(III), Nd(III), and Sm(III) are reported. The Ln(III)–bpcd2– complex ions, where bpcd2– stands for N,N′-bis(2-pyridylmethyl)-trans-1,2-diaminocyclohexane-N,N′-diacetate, were isolated as PF6– salts. These salts were characterized by elemental analysis, X-ray crystallography, IR, and 1H and 13C NMR spectroscopy. Binuclear [La2(bpcd)2(H2O)2]2+ crystallized from an aqueous solution in the monoclinic P21/c space group as a cocrystallate with Na2bpcd and NaPF6, nominally Na2.34[La1.22(C22H26N4O4)2(H2O)2][PF6]2·2H2O, with a = 11.3343(6) Å, b = 17.7090(9) Å, c = 15.0567(8) Å, β = 110.632(3)°, and Z = 4 (Z′ = 2). La is eight-coordinate with distorted dodecahedral coordination geometry provided by a N4O4 donor atom set. In addition to four N atoms from the bpcd2– ligand, La’s coordination sphere includes O atoms from a water molecule and three acetate groups (one O atom from singly bound acetate and two O atoms from acetate groups that bridge the La centers). The 1H and 13C assignments for H2bpcd and the metal–bpcd2– complexes were made on the basis of 2D COSY and HSQC experiments, which established 1H–1H and 1H–13C correlations. The NMR spectral data were used to establish the symmetry of the cationic complexes present in aqueous solution. The data indicate that the La(III)–bpcd2– and Sm(III)–bpcd2– complexes are present in solution as a single species with C2 symmetry. The 1H NMR spectrum of [Nd(bpcd)]PF6 in D2O consists of eight considerably line-broadened, paramagnetic-shifted singlets. The ab initio quantum mechanical calculations at the PCM/MP2/SDD//HF/SDD level, which were established previously for determining isomerization energies for octahedral M(III)–bpad2– complex ions, were used to determine the relative free energies of the geometric isomers possible for eight- and nine-coordinate La(III)–bpcd2– cationic aqua complexes in aqueous solution, i.e., [La(bpcd)(H2O)2]+ and La(bpcd)(H2O)3]+

    Influence of Alloying upon Grain-Boundary Creep

    Get PDF
    Grain-boundary displacement, occurring in bicrystals during creep at elevated temperature (350 degrees c), has been measured as a function of the copper content (0.1 to 3 percent) in a series of aluminum-rich aluminum-copper solid-solution alloys. The minimums in stress and temperature, below which grain-boundary motion does not occur, increase regularly with the copper content as would be expected if recovery is necessary for movement. Otherwise, the effects, if any, of the copper solute upon grain-boundary displacement and its rate are too small for identification by the experimental technique employed. It was shown, additionally, that grain-boundary displacement appears regular and proceeds at a constant rate if observed parallel to the stress axis, whereas the motion is seen to occur in a sequence of surges and the rate to diminish with time if the observations are made perpendicular to the stress axis

    A charge transfer inefficiency correction model for the Chandra Advanced CCD Imaging Spectrometer

    Full text link
    Soon after launch, the Advanced CCD Imaging Spectrometer (ACIS), one of the focal plane instruments on the Chandra X-ray Observatory, suffered radiation damage from exposure to soft protons during passages through the Earth's radiation belts. The primary effect of the damage was to increase the charge transfer inefficiency (CTI) of the eight front illuminated CCDs by more than two orders of magnitude. The ACIS instrument team is continuing to study the properties of the damage with an emphasis on developing techniques to mitigate CTI and spectral resolution degradation. We will discuss the characteristics of the damage, the detector and the particle background and how they conspire to degrade the instrument performance. We have developed a model for ACIS CTI which can be used to correct each event and regain some of the lost performance. The correction uses a map of the electron trap distribution, a parameterization of the energy dependent charge loss and the fraction of the lost charge re-emitted into the trailing pixel to correct the pixels in the event island. This model has been implemented in the standard Chandra data processing pipeline. Some of the correction algorithm was inspired by the earlier work on ACIS CTI correction by Townsley et al. (2000; 2002). The details of the CTI model and how each parameter improves performance will be discussed, as well as the limitations and the possibilities for future improvement.Comment: 12 pages, 12 figures, will appear in Proc. SPIE 550

    Low Frequency Tilt Seismology with a Precision Ground Rotation Sensor

    Get PDF
    We describe measurements of the rotational component of teleseismic surface waves using an inertial high-precision ground-rotation-sensor installed at the LIGO Hanford Observatory (LHO). The sensor has a noise floor of 0.4 nrad/Hz/ \sqrt{\rm Hz} at 50 mHz and a translational coupling of less than 1 μ\murad/m enabling translation-free measurement of small rotations. We present observations of the rotational motion from Rayleigh waves of six teleseismic events from varied locations and with magnitudes ranging from M6.7 to M7.9. These events were used to estimate phase dispersion curves which shows agreement with a similar analysis done with an array of three STS-2 seismometers also located at LHO

    Cylindrical surface profile and diameter measuring tool and method

    Get PDF
    A tool is shown having a cross beam assembly made of beams joined by a center box structure. The assembly is adapted to be mounted by brackets to the outer end of a cylindrical case. The center box structure has a vertical shaft rotatably mounted therein and extending beneath the assembly. Secured to the vertical shaft is a radius arm which is adapted to rotate with the shaft. On the longer end of the radius arm is a measuring tip which contacts the cylindrical surface to be measured and which provides an electric signal representing the radius of the cylindrical surface from the center of rotation of the radius arm. An electric servomotor rotates the vertical shaft and an electronic resolver provides an electric signal representing the angle of rotation of the shaft. The electric signals are provided to a computer station which has software for its computer to calculate and print out the continuous circumference profile of the cylindrical surface, and give its true diameter and the deviations from the ideal circle
    • …
    corecore