429 research outputs found

    Supersymmetric Harry Dym Type Equations

    Full text link
    A supersymmetric version is proposed for the well known Harry Dym system. A general class super Lax operator which leads to consistent equations is considered.Comment: 4 pages, latex, no figure

    Selective activation of primary afferent fibers evaluated by sine-wave electrical stimulation

    Get PDF
    Transcutaneous sine-wave stimuli at frequencies of 2000, 250 and 5 Hz (Neurometer) are thought to selectively activate Aβ, Aδ and C afferent fibers, respectively. However, there are few reports to test the selectivity of these stimuli at the cellular level. In the present study, we analyzed action potentials (APs) generated by sine-wave stimuli applied to the dorsal root in acutely isolated rat dorsal root ganglion (DRG) preparations using intracellular recordings. We also measured excitatory synaptic responses evoked by transcutaneous stimuli in substantia gelatinosa (SG) neurons of the spinal dorsal horn, which receive inputs predominantly from C and Aδ fibers, using in vivo patch-clamp recordings. In behavioral studies, escape or vocalization behavior of rats was observed with both 250 and 5 Hz stimuli at intensity of ~0.8 mA (T5/ T250), whereas with 2000 Hz stimulation, much higher intensity (2.14 mA, T2000) was required. In DRG neurons, APs were generated at T5/T250 by 2000 Hz stimulation in Aβ, by 250 Hz stimulation both in Aβ and Aδ, and by 5 Hz stimulation in all three classes of DRG neurons. However, the AP frequencies elicited in Aβ and Aδ by 5 Hz stimulation were much less than those reported previously in physiological condition. With in vivo experiments large amplitude of EPSCs in SG neurons were elicited by 250 and 5 Hz stimuli at T5/ T250. These results suggest that 2000 Hz stimulation excites selectively Aβ fibers and 5 Hz stimulation activates noxious transmission mediated mainly through C fibers. Although 250 Hz stimulation activates both Aδ and Aβ fibers, tactile sensation would not be perceived when painful sensation is produced at the same time. Therefore, 250 Hz was effective stimulus frequency for activation of Aδ fibers initiating noxious sensation. Thus, the transcutaneous sine-wave stimulation can be applied to evaluate functional changes of sensory transmission by comparing thresholds with the three stimulus frequencies

    Oncogenic c-Myc induces replication stress by increasing cohesins chromatin occupancy in a CTCF-dependent manner.

    Get PDF
    Oncogene-induced replication stress is a crucial driver of genomic instability and one of the key events contributing to the onset and evolution of cancer. Despite its critical role in cancer, the mechanisms that generate oncogene-induced replication stress remain not fully understood. Here, we report that an oncogenic c-Myc-dependent increase in cohesins on DNA contributes to the induction of replication stress. Accumulation of cohesins on chromatin is not sufficient to cause replication stress, but also requires cohesins to accumulate at specific sites in a CTCF-dependent manner. We propose that the increased accumulation of cohesins at CTCF site interferes with the progression of replication forks, contributing to oncogene-induced replication stress. This is different from, and independent of, previously suggested mechanisms of oncogene-induced replication stress. This, together with the reported protective role of cohesins in preventing replication stress-induced DNA damage, supports a double-edge involvement of cohesins in causing and tolerating oncogene-induced replication stress

    Oncogenic c-Myc induces replication stress by increasing cohesins chromatin occupancy in a CTCF-dependent manner

    Get PDF
    Oncogene-induced replication stress is a crucial driver of genomic instability and one of the key events contributing to the onset and evolution of cancer. Despite its critical role in cancer, the mechanisms that generate oncogene-induced replication stress remain not fully understood. Here, we report that an oncogenic c-Myc-dependent increase in cohesins on DNA contributes to the induction of replication stress. Accumulation of cohesins on chromatin is not sufficient to cause replication stress, but also requires cohesins to accumulate at specific sites in a CTCF-dependent manner. We propose that the increased accumulation of cohesins at CTCF site interferes with the progression of replication forks, contributing to oncogene-induced replication stress. This is different from, and independent of, previously suggested mechanisms of oncogene-induced replication stress. This, together with the reported protective role of cohesins in preventing replication stress-induced DNA damage, supports a double-edge involvement of cohesins in causing and tolerating oncogene-induced replication stress

    Human ATG4 autophagy proteases counteract attachment of ubiquitin-like LC3/GABARAP proteins to other cellular proteins

    Get PDF
    Microtubule-associated protein 1 light chain 3 alpha (LC3)/GABA type A receptor–associated protein (GABARAP) comprises a family of ubiquitin-like proteins involved in (macro)autophagy, an important intracellular degradation pathway that delivers cytoplasmic material to lysosomes via double-membrane vesicles called autophagosomes. The only currently known cellular molecules covalently modified by LC3/GABARAP are membrane phospholipids such as phosphatidylethanolamine in the autophagosome membrane. Autophagy-related 4A cysteine peptidase (ATG4) proteases process inactive pro-LC3/GABARAP before lipidation, and the same proteases can also deconjugate LC3/GABARAP from lipids. To determine whether LC3/GABARAP has other molecular targets, here we generated a preprocessed LC3B mutant (Q116P) that is resistant to ATG4-mediated deconjugation. Upon expression in human cells and when assessed by immunoblotting under reducing and denaturing conditions, deconjugation-resistant LC3B accumulated in multiple forms and at much higher molecular weights than free LC3B. We observed a similar accumulation when preprocessed versions of all mammalian LC3/GABARAP isoforms were expressed in ATG4-deficient cell lines, suggesting that LC3/GABARAP can attach also to other larger molecules. We identified ATG3, the E2-like enzyme involved in LC3/GABARAP lipidation, as one target of conjugation with multiple copies of LC3/GABARAP. We show that LC3B–ATG3 conjugates are distinct from the LC3B–ATG3 thioester intermediate formed before lipidation, and we biochemically demonstrate that ATG4B can cleave LC3B–ATG3 conjugates. Finally, we determined ATG3 residue K243 as an LC3B modification site. Overall, we provide the first cellular evidence that mammalian LC3/GABARAP post-translationally modifies proteins akin to ubiquitination (‘LC3ylation’), with ATG4 proteases acting like deubiquitinating enzymes to counteract this modification (‘deLC3ylation’)

    Potential Mechanisms for Cancer Resistance in Elephants and Comparative Cellular Response to DNA Damage in Humans

    Get PDF
    Importance: Evolutionary medicine may provide insights into human physiology and pathophysiology, including tumor biology. Objective: To identify mechanisms for cancer resistance in elephants and compare cellular response to DNA damage among elephants, healthy human controls, and cancer-prone patients with Li-Fraumeni syndrome (LFS). Design, Setting, and Participants: A comprehensive survey of necropsy data was performed across 36 mammalian species to validate cancer resistance in large and long-lived organisms, including elephants (n = 644). The African and Asian elephant genomes were analyzed for potential mechanisms of cancer resistance. Peripheral blood lymphocytes from elephants, healthy human controls, and patients with LFS were tested in vitro in the laboratory for DNA damage response. The study included African and Asian elephants (n = 8), patients with LFS (n = 10), and age-matched human controls (n = 11). Human samples were collected at the University of Utah between June 2014 and July 2015. Exposures: Ionizing radiation and doxorubicin. Main Outcomes and Measures: Cancer mortality across species was calculated and compared by body size and life span. The elephant genome was investigated for alterations in cancer-related genes. DNA repair and apoptosis were compared in elephant vs human peripheral blood lymphocytes. Results: Across mammals, cancer mortality did not increase with body size and/or maximum life span (eg, for rock hyrax, 1% [95% CI, 0%-5%]; African wild dog, 8% [95% CI, 0%-16%]; lion, 2% [95% CI, 0%-7%]). Despite their large body size and long life span, elephants remain cancer resistant, with an estimated cancer mortality of 4.81% (95% CI, 3.14%-6.49%), compared with humans, who have 11% to 25% cancer mortality. While humans have 1 copy (2 alleles) of TP53, African elephants have at least 20 copies (40 alleles), including 19 retrogenes (38 alleles) with evidence of transcriptional activity measured by reverse transcription polymerase chain reaction. In response to DNA damage, elephant lymphocytes underwent p53-mediated apoptosis at higher rates than human lymphocytes proportional to TP53 status (ionizing radiation exposure: patients with LFS, 2.71% [95% CI, 1.93%-3.48%] vs human controls, 7.17% [95% CI, 5.91%-8.44%] vs elephants, 14.64% [95% CI, 10.91%-18.37%]; P \u3c .001; doxorubicin exposure: human controls, 8.10% [95% CI, 6.55%-9.66%] vs elephants, 24.77% [95% CI, 23.0%-26.53%]; P \u3c .001). Conclusions and Relevance: Compared with other mammalian species, elephants appeared to have a lower-than-expected rate of cancer, potentially related to multiple copies of TP53. Compared with human cells, elephant cells demonstrated increased apoptotic response following DNA damage. These findings, if replicated, could represent an evolutionary-based approach for understanding mechanisms related to cancer suppression

    An evaluation tool for FKBP12-dependent and -independent mTOR inhibitors using a combination of FKBP-mTOR fusion protein, DSC and NMR

    Get PDF
    Mammalian target of rapamycin (mTOR), a large multidomain protein kinase, regulates cell growth and metabolism in response to environmental signals. The FKBP rapamycin-binding (FRB) domain of mTOR is a validated therapeutic target for the development of immunosuppressant and anticancer drugs but is labile and insoluble. Here we designed a fusion protein between FKBP12 and the FRB domain of mTOR. The fusion protein was successfully expressed in Escherichia coli as a soluble form, and was purified by a simple two-step chromatographic procedure. The fusion protein exhibited increased solubility and stability compared with the isolated FRB domain, and facilitated the analysis of rapamycin and FK506 binding using differential scanning calorimetry (DSC) and solution nuclear magnetic resonance (NMR). DSC enabled the rapid observation of protein–drug interactions at the domain level, while NMR gave insights into the protein–drug interactions at the residue level. The use of the FKBP12–FRB fusion protein combined with DSC and NMR provides a useful tool for the efficient screening of FKBP12-dependent as well as -independent inhibitors of the mTOR FRB domain

    Extracellular volume fraction using contrast-enhanced CT is useful in differentiating intrahepatic cholangiocellular carcinoma from hepatocellular carcinoma

    Get PDF
    ObjectivesTo evaluate whether tumor extracellular volume fraction (fECV) on contrast-enhanced computed tomography (CT) aids in the differentiation between intrahepatic cholangiocarcinoma (ICC) and hepatocellular carcinoma (HCC).MethodsIn this retrospective study, 113 patients with pathologically confirmed ICC (n = 39) or HCC (n = 74) who had undergone preoperative contrast-enhanced CT were enrolled. Enhancement values of the tumor (Etumor) and aorta (Eaorta) were obtained in the precontrast and equilibrium phase CT images. fECV was calculated using the following equation: fECV [%] = Etumor/Eaorta × (100 – hematocrit [%]). fECV values were compared between the ICC and HCC groups using Welch’s t-test. The diagnostic performance of fECV for differentiating ICC and HCC was assessed using receiver-operating characteristic (ROC) analysis. fECV and the CT imaging features of tumors were evaluated by two radiologists. Multivariate logistic regression analysis was performed to identify factors predicting a diagnosis of ICC.ResultsMean fECV was significantly higher in ICCs (43.8% ± 13.2%) than that in HCCs (31.6% ± 9.0%, p < 0.001). The area under the curve for differentiating ICC from HCC was 0.763 when the cutoff value of fECV was 41.5%. The multivariate analysis identified fECV (unit OR: 1.10; 95% CI: 1.01–1.21; p < 0.05), peripheral rim enhancement during the arterial phase (OR: 17.0; 95% CI: 1.29–225; p < 0.05), and absence of washout pattern (OR: 235; 95% CI: 14.03–3933; p < 0.001) as independent CT features for differentiating between the two tumor types.ConclusionsA high value of fECV, peripheral rim enhancement during the arterial phase, and absence of washout pattern were independent factors in the differentiation of ICC from HCC

    Efficacy of the New Neuraminidase Inhibitor CS-8958 against H5N1 Influenza Viruses

    Get PDF
    Currently, two neuraminidase (NA) inhibitors, oseltamivir and zanamivir, which must be administrated twice daily for 5 days for maximum therapeutic effect, are licensed for the treatment of influenza. However, oseltamivir-resistant mutants of seasonal H1N1 and highly pathogenic H5N1 avian influenza A viruses have emerged. Therefore, alternative antiviral agents are needed. Recently, a new neuraminidase inhibitor, R-125489, and its prodrug, CS-8958, have been developed. CS-8958 functions as a long-acting NA inhibitor in vivo (mice) and is efficacious against seasonal influenza strains following a single intranasal dose. Here, we tested the efficacy of this compound against H5N1 influenza viruses, which have spread across several continents and caused epidemics with high morbidity and mortality. We demonstrated that R-125489 interferes with the NA activity of H5N1 viruses, including oseltamivir-resistant and different clade strains. A single dose of CS-8958 (1,500 µg/kg) given to mice 2 h post-infection with H5N1 influenza viruses produced a higher survival rate than did continuous five-day administration of oseltamivir (50 mg/kg twice daily). Virus titers in lungs and brain were substantially lower in infected mice treated with a single dose of CS-8958 than in those treated with the five-day course of oseltamivir. CS-8958 was also highly efficacious against highly pathogenic H5N1 influenza virus and oseltamivir-resistant variants. A single dose of CS-8958 given seven days prior to virus infection also protected mice against H5N1 virus lethal infection. To evaluate the improved efficacy of CS-8958 over oseltamivir, the binding stability of R-125489 to various subtypes of influenza virus was assessed and compared with that of other NA inhibitors. We found that R-125489 bound to NA more tightly than did any other NA inhibitor tested. Our results indicate that CS-8958 is highly effective for the treatment and prophylaxis of infection with H5N1 influenza viruses, including oseltamivir-resistant mutants
    corecore